AOTHOR	Raugh, Michael
TITLE	A Mnemonic Hethod for the acquisition of a
	Second-Language Vocabulary. Psychology and Education
INSTITUTION	Stanford Univ., Calif. Inst. for mathematical Studies
	in Social Science.
SPONS AGENCX	Advanced Research Projects Agency (DOD), Washington,
	D.C.: Office of Naval Research, Mashington, D.C.
	Personnel and Training Research programs office.
PUB DATE	15 var 74
NOTE	84p.; For related document, see FL 006488
EDRS PRICE	HF-\$0.75 HC-\$4. 20 PLUS POSTAGE
DESCRIPTORS	*Associative Learning: Computer assisted Instruction
	Language Instruction; Memory; *Mnemonics; Retention;
	*Second Language Learning; *Spanish; *Vocabulary
	Development

ABSTE:T
Four experiments are reported evaluating the effectiveness of a memonic procedure, called the keyword method, for learning a foreign language vocabulary. The method divides the study of a vocabulary itea into two stages. The first stage involves associating the spoken foreign word to an English word that sounds like some part of the foreign word; the second stage reguires the subject to form a mental image or picture of the keyword "interacting" with the English translation. Thus, the keyword can be described as a chain of two links connecting a foreign word to its English translation. The foreign word is linked to a keyuord by a similarity in soand (acoustic link), and the keyword is linked to the English translation by a mental image (imagery link). The experiments compare the keyword method for learning a Spanish vocabuiary with various control procedures. In all cases, the keyword method prowed to be highly effective, yielding in one experiment a final test score of 88 percent correct for the keyword group compared to 28 percent for the control group. Several theoretical issues related to the keyword method are examined; practical aspects of incorporating the method into a foreign language curriculum also are discussed. (Author)

A MNEMONIC METHOD FOR THE ACQUISITION OF A

SECOND-LANGUAGE VOCABULARY
by
Michael R. Raugh and Richard C. Atkinson

TECENICAL REPORT NO. 224
Mirch 15, 1974

PSYCHOLOGY \& EDUCATION SEFTES

Reproduction in Whole or in Part is Permitted for Any Purpose of the United States Government

This research was supported jointly by the Advanced Projects Research Agency of the Department of Defense and by the Office of Naval Research, Personnel and Training Research Programs, Psychological Sciences Division, under Cortract No. No0014-67-A-0012-0054.

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES STANFORD UNIVERSITY

STANFORD, CALIFORNIA

TECHNICAi REPORTS

PSYCHOLOGY SERES

institute for mathe matical studies in the social sciences

(Place of publicaticn shown in parentheses; If published title is different from title of Technical Report
this is also shown in parenthes.s.)
W. K. Estes. Reinfucement in human teammg. Decembet 20,1967. (In J. Tapp (Ed.), Reinturcement ant bihavior New York: Academic Press, 1909. PF. 63-94.)
G. L. Wolford, D. L. Wessel, and W. K. Estes. Furthet evidence concuming scanming and sampling a sumptions of visuat detection models. Jamury 31, 1968. (Perception and Psychoplysirs, 1968, 3, 439-444.)
R. C. Atkinson and R. M. Shiffrin. Some speculation; on stofage and retrieval processes in lang-tem memory. February $2,2968$. (Psychological Review, 1969, 76, 179-193.)
J. Holimgren. Visual detection with imperfect recognition. March 29, 1963. 'Perception anc' Psychophysics, 1968, \$44), , ()
L. B. Mlodrosky. The Frostig and the Bender Gestalt as predictors of reading ach evement. April 12,1968.
P. Suppes. Sone theoretical models for mathematics learning. Ansil 15,1968. UJournal of Research inn gevelopment in Education. 1967, 2. 5-22.)
3. M. Olson. Leammo and retention in a continucus recoantint task. May 15, 196R. Journal of Experimental Psyzhology, 1969, 81, 381-384.1
R. N. Hartley. An mestigation of list fypes and cur: to hecilitate initidi readily vocabulary acquisition. May 39, 1968. (Psychonemic Science, 1968, 12(b), 251-252, Efiects of list types and cues on the leaming of word lists. Readma Researchi Quarterly, 1970,6(1),97-121.) F. Suppes. Stimulus-re sponse theory of finte automata. Jume 19, 1968. (Journal of Mathemalical Psychology, 1969, 6, 327-355.) N. Moler and P. Suppes. Quantifier-free axionts for censtructive plare geometry. June 20, 1968. (Compositio Mathematica, 1968, 20, 143-152.) W. K. Estes and D. P. Horst. Latency as a funcion of mumber of response alternkitives in pained-associate learnina. July 1, 1968. M. Schiag-Rey and P. Sippes. High-order dmenstons in concept identification. Jutv 2. 1968. (Pbytiometic Science, 1968, 11, 141-142.) R. M. Shifrin. Search and retrieval processes in long-temm memory. August 15, 1988.
R. D. Freund, G. R. Loftus, and R. C. Atkinson. Applications of mutiprocess modeis for memmy to continuous recognition tasks. December 28, 1968. (Joumal of Mathematical Psychology, 1969, 6, 576-594.)
R. C. Atkinson. Information delay in human learning. December 18.1968. Woumal of Verbal Licinng and Verbai Behavior, 1969, 8,507-511.)
R. C. Atkinson, J. E. Holmaren, and J. F. Juola. Processing time as intluenced by the numbet of eienents in the visual display. March $24,1969$. (Percepiton and Psychopliysizx, 1969,6, 321-326.)
F. Suppes, E. F. Loftus, and M. derman. Problem-solving on a computer-based teletype. March 25.1969. Educational Studies in Mathematics, 1969, 2, 1-15.)
P. Suppes and M. Morningstar. Evaluation of three computer-assisted instruction programs. RRa, 2,1469. :Computer-assisted instruction. Science, 1969, 166, 343-350.)
P. Suppe;. On the problems of usine neithematics in the development of the social sciences. May 12,2969. In Mathematics in the soctal sciences If Austrai i.. Canberra: Australian Government Publishing Service, 1972. Pp. 3.15.)
2. Donnotor. Probabilistic relational structures and ther applications. May 14, 1969.
R. C. Atkinson and T. D. Wickens. Human memory and the concept of reinforcement. May 20, 1969. (in R. Ghacer (Ed.), The nature of remforcement. Now York: Academic Press, 1971. Pp. 66-1 20.)
R. J. Titiev. Some model-theorelic results in measurement theory. May 22, 1969 (Mea:urement structures in classes that are not universally akionatizable. Journal O. Mathematical Ps; ctology, 1972. 9, 200-205.)

1. Sunpes. Measurement: Proticris of theory arnd application. June 12, 1969. (In Mathemitics in the socid sciences nitustralia. Canberra: Australian Government Publishing Service, 1972. Pp. 613-622.1
P. Suppes and C. Itrke. Accelerated program in elementary-school witheratics--The fourth year. Ausust 7, 1969. (Psychology in the Schoc. 1970.7.111-126.)
 Learning and Vertal Behavior, 1970.9,99-105.)
p. Suopes and S. Feldman. Younq childen's comurehension of inqical connectuva. Ortober 15,1969. Journil of Experimental Chidd Psychology, 1971.12,344-317.)
J. H. Laubsch. An adaptive teachimq system for optimal item illocition. November 14, 1969.
R. L. Klatiky and R. C. Atkinson. Memory scans based on atternative test stumulus represemations. Novenber 25, 1969. (Perception anu Psychophysics, 1970, 8,113-117.)
J. E. Holmgren. Response hitency as an indicant of information proressing in visual search risks. Murch 16. 1970.
P. Suppes. Probabilistic arammara for milurd lanquages. May 25, 1970. (Synthese, 1970. 11, 111-222.)
E. M. Gamnon. A syntactical analysis of some lirst-qrade readers. June 22.:770.
K. N. Wexler. An cutomaton analysis of the leatmin of a nmature system of Japinese. July 24, 1970.

R. C. Atkinson, J. D. Fletchef, K. C. Chetin, and C. M. Suaflef. Instruction in mint peathin mider comphter control. The Stanford propect.

 of Enpermental Psychol.ugy, 1971. 89, 63-77.7
 of Expermental Psychology, 1971, 87, 281-288.1
W. A. Rottmayer. A lormal theory ur porception. November 13, 1970 .
 1970.

REPORT DOCUMENTATION PAGE	READ WNSTRUCTIONS BEFORE COMPLETING FORM
T. REPORTMUMEER 224	8. RECTPIENT'S CATALOG NUMBEA
- Title (and Subtille) A MNEMONIC METHOD FOR THE ACQUISITION OF A SECOND-LANGUAGE VDCABULLARY	3. TYPE OF REPORT A PERIOU COVEREO Technical Report 8. PERFOMMING ONG. REPORT MUMEEA
7. AUTMOR(O) Michael R. Raugh and RJchard C. Atkinson	7. CONTAACTIO OR GRANTMUMEERO) $N 00014-67-A-0012-0054$
9. performing organization namé and hodress Institw ce for Matbematical Studies in the Sociad Sciences - Stanford Unive:sity Stanford, California $943 C 5$	10. PROGRAM ELEMENT, PROJECT, TASK AREA EWORK UNIT NUMBERS NR 154-326
ii. Controlling office name and afidress Personnel \& Training Research Programs	12. REPORT DATE March 15, 2974
Office of Naval Research Arlington, VA 22217	i1. Numben of pages 70
	15. SECUAITY CLASS. (Of the Ropors) none
	15. geceiassmpicaitionthowngradine
16. Distribution statement for inio Rapast) Approved for public release; distribution unlimited	
17. Distribution sta tement (of tho abetraet mitared in Dlock 30, If differmet from Raport)	
Ti. SUPPLEMENTARY NOTES	
19. KEY WORDS (Continue on reverse ofdo II nococoary and topentity by block number) Mnemonics Computer-assisted Instruction Second-language vocabulary acquisition Mental Imagery Keyword	
20. ABSTRACT (Comilmue on roverec oldo if necereary mid identity by block manber) Four experiments are reported evaluating the effectiveness of a memonic procedure, called the keyword method, for learning a fureign language vocabfulary. The method divides the study of a vocabulary item into two stages. The first stage involves associating the spoken foreign word to an English word that sounds like some paxt of the foreign word; the second stage requires the subject to fom a mental image or picture of the keyword "interacting" with the English translation. Thus, the keyword can be described as a chain of two	

(144ITY CLASSIFICATION OF THISPAGEPWHONDETE Entered)

Inks connecting a foreign word to its English translation: The foreign word is linked to a keyword by a similarity in sound (acoustic innk), and the keyword is linked to the English translation by a mental image (imagery jink). The experiments compare the keyword method for learning a Spanish vocabulary with various control procedures. In all cases, the keyword method prover to be highly effective, yielding in one experiment a final test score of 63% correct for the keyword group compared to 28% for the control group. Several theoretical issues related to the keyword method are examined; practical aspects of incorporating the method into a foreign language curriculum also are discussed.
ARPA Order Number: 2284/8-30-72
Contract Number: N00014-67-A-0012-0054
Program Code Number: $3 D 20$
ONR Project Number: NR 154-326
Principal Investigator: Richard C. Atkinson Professor of Psychology (415) 3c1-2300, Ext. 3487
Contractor: Institute for Mathematical Studies in
the Social Sciences
Stanford University
Stanford, California 94305
Seientific Officex: Dr. Joseph YoungAssistant Director
Personnel and Training ResearchPrograms
Office of Naval Research (Code 458)
Effective Date:
Expirattion Date:31 July 1974
Sponsored by
Advanced Research Projects Agencyand
Office of Naval ResearchARPA Order No. 2284
The views and conclusions contained in this document are thoseof the authors and should not be interpreted as necessarilyrepresenting the official poilcies, either expressed or implied,of the Advanced Research Projects Agency or the Office of NavalResearch or the U. S. Govermment. Reproduction in whole or inpart is permitted for any purpose of the U. S. Government.Approved for public release; distribution unlimited.

A sexies of experiments are seported evaluating the effectiveness of a mnemonic procedure, called the keyword method, for learning a foreign language vocabulary. The method divides the study of a vocabulary item into two stages. The first stage involves associating the spoken foreign word to an English word that sounds like some part of the forelgn word; the serond stage requires the subject to form a mental image or picture of the keyword "interacting" with the English transiation. Thus, the keyword method can de described as a chain of two Itiks connecting a foreign word to its English translation: The forefgn word is linked to a keyword by a similarity in sound (acoustic IIrk), and the keyword is Iinked to the English translation by a mental image (imagery link). As an example, consider the Spanish word caballo, meaning horse. Its pronunciation is somewhat like "cobmeye-yo" and contanns a sound that resembles the English word "eye." Usiag eye as the keyword the subject must form a mental image of an eye iateracting in some way with a horse; e.g., a cyclopean eye winking in the fureheac of a horse or a horse kiciing a giant eye. With minimal training, the presentation of the Spanish word should elicit the keyword, which in turn will recall the mental inage and the English transiation.

Four experiments were dersigned to evaluate the effectiveness of the keyword method. In Experiment I all subjects were first taught the keyword for each word of a Gonward Spanish vocabulary. Afterwards, subjects were divided into two groups to leam the English translations; the experimental group learned by using mental imagery to associate each
keywora to the corresponding English translation, while the control group used a rehearsal method to associate each Spanish word directly to its English transiation. Experiment II was similar to Experiment I, except that it did not involve the artificial preleaming of test vocabulary keywords. Instead, subjects in the experimental group leamed the keywords at the same time that they formed the imagery links, whereas control subjects used the rehearsal method to make $d \quad t$ associations between the Spanish words and the English transiations.

Experiment III, which used a within-subjects design, was conducted to test the keyword against a freer control condition. A larger and more varied test vocabulary was used and was presented to subjects over a period of many days. The experimental condition used the keyword method, and the control condition permitted the subject to use any dearning strategy except the keyword method. Experiment IV was the same as Experiment III with the addition of a free-choice condition. The free-choice condition placed no constraint on how the subject learned; In uhis condition the subject could request a keyword wheneve he wished. Sxperiments III and IV were zun under computer control, employing equip. men: and a facility that is used for computer-assisted instruction. Thus, these two studies were conducted under conditions where instruction, rather than experimentation, was the focus of activity irom the subjects: perspective.

Experiments I and II demonstrated that the keyword method was highly effective when sompared with a rehearsal strategy. In Experiment I the keyword eroup yielded a final test score of 88% correct compared with $\cap 8 \%$ for the control group; in Experiment II the results
were 59% and 30% correct for the keyword and control groups, respectively. Experiment III demonstrated that the keyword method also is superior to a less restricted corrrol that permitted subjects to use any learning strategy they desired except the keywor method; the keyword condition yielded a final test score of 54% correct versus 45% for the control condition. The result is all the more striking since a within-subjects design was used in this'experiment, and many subjects reported using the keyword method for some of the control items even though instructed to the contrary. Experiment IV demonstrated that both the free-choice and keyword conditions were significantly better than the control condition, but not significantly different from each other; the final test scores were $59 \%, 57 \%$, and 50% for the free-choice, keyword, and control conditions, respectively. In the free-choice condition, subjects requested a keyword at least once for 92% of the items, and the frequency of requests increased with the scaled difficulty of the items.

The results provide strong support for the use of the keyword method in learning a foredgn language vocabulary. Several issues related to the keyword method are examined in the paper, and altemative versions of the method are described. Some of the practical considerations involved in adapting the method for inclusion in a foreign-language curriculum also are discussed.

Mental imagery was employed by scholars of classical times as a means of memorizing complex arrays of information (Yates, 1972). Lately the technique has become a matter of research interest both because of its theoretical implications for memory (Paivio, 2971) and because it offers an effective means of remembering certain kinds of information (Bower, 1972; Bugelski, 1968). In the experiments reported here, we wanted to determine whether mental imagery could also be applied to the practical problem of leaming a foreign language vocabulary, an area in which littie systematic research has been done (Kughes, 1968).

For experimental purposes a procedure was devised that we have called the "keyword method" for associating a spoken foreign word with its English translation. This method divides the study of a word into two stages. The first stage involves associating the spoken foreign word to an English word that sounds approximately like some part of the foreign word. As an example, the Spanish word caballo (pronc-nced somewhat like "cob-eye-yo"), contains a sound that resembles the spoken English word "eye"; we call such a similar sounding English word a keyword. The second stage involves mental imagery in which a symbolic image of the keyword interacts in a graphic way with a symboile image of the English translation. In the case of caballo (meaning horse), one could form a mental image of something like a cyciopean eye winking in the forehead of a horse or a horse kicking a giant eye. As another example, the Spanish word for duck is pato (prenounced somewhat like "pot-o"). Employing the Engilsh word "pot" as the keyword, one could
imagine a duck hiding under an overturned flower pot with its webbed feet and tufted tail sticking out below.

The keyword method is applied by presenting a subject with a series of spoken foreign words. Each foreign word is pronounced; while the word is being pronounced, a keyword and the English translation are disa played. During the presentation of each item the subject must associate the sound of the foreign word to the given keyword and then generate a mental image relating the keywori to the English translation.

The preselection of keywords by the experimenter is an important aspect of the method. In preparing a test vocabulary a keyword is considered to be good if it satisfies the following rifteria:

1. The keyword sounds as much as possible like a part (not necessarily ali) of the foreign word.
2. It is easy to form a memorable imagery link connecting the keyword and the English translation.
3. The keyword is unique (different from the other keywords used in the test vocabuiary).

Criterion 1 allows flexibility in the choice of keywords, since any part of a foreign word could be used as the key sound. What this means for a polysyllabic forelgn word is that anything from a monosyliable to a longer word (or even a short phrase that "spans" the whole foreign word) might be used as a keyword. fis examples of the two extremes, "Iog" could be used as a keyword for Spanish 2 agartija, and the keyword phrase "see you, dad" could te used for Spanish ciudad. Criterion 2 must be satisfied to make the imagery link as simple as possible. Often concrete nouns are good as keywords, because they are generally easy to image; abstract nouns for which symbolic imagery comes readily to mind also are
effective keywords. A goci keyword is easily imaged in isolation; however, it must also be easily imaged in relationship to its paired English translation. Criterion 3 is used to avoid the ambiguities that could arise if a given keyword were associated with more than one foreign word. For a large vocabulary that is divided into subvocabularies to be presented on different days, Criterion 3 might be applied only to each subvocabulary; thus, a given keyword could be used.for different words on different days, but not for different words on the same day. Criterion 3 does not impose a serious practical ilmitation on the presentation of a vocabuiary, since it is usualiy an easy matter to distribute items over days in a way that avoids keyword repetition on any single day.

The keyword method can be described as a chain of two links connecting a foreign word to its English transiation through the mediation of a keyword. The foreign word is linked to the keyword by a similarity in sound (the acoustic link); the keyword is in turn linked to the English translation by a learner-generated mental image (the mnemonic or imagery link). This method could be modified to produce a varlety of related learming strategies by changing the ways in which the two links are fomed. For example, instead of using an acoustic link, one could use an orthographic link by basing the selection of a keyword on a similarity of spelifing rather than a similarity of sound (thus, "ball" might be used as a keyword for cabalio). Or the mnemonic link could be besed upon a verbal construct invoiving a sentence whose subject is the keyword and whose object is the English translation.

Furst (1949), a popular writer, proposed a variation of our method that employs an acoustic first $l i n k$ and a secona link that is based upon
a similarity in meaning between the keyword and the English translation. An example from German is the word kurz, meaning short; "curt" might be used as a keyword since it is synonymous with one of the meanings of short. The problem with this method is that the vocabulary for which suitable keywords could be found is too restricted to be useful in most practical situations. In this respect our method is more accommodating than Furst's, since mental imagery permits the association of words that are not associated directly by similarities in meaning.

Lorayne (1957), another popular writer, proposed a method that resembles the keyword method. Lorayne used an acoustic link and a mental imagery link. As in the keyword method, Lorayne's mental imagery link is learnemgenerated. The two points that distinguish this method from the keyword method are: (1) Lorayne uses learner-generated keywords, and (2) he emphasizes spanning as much of the full sound of the foreign word as possible. In our method keywords are provided by the experimenter, and no emphasis is placed on spanning. Butler, Ott, and Blake (2973), using a German monosyllabic vocabulary, experimented with Lorayne's method and found no difference between a group using the experimental method and another equally timed group that was instructed to learn by any method. More will be said below about the differences between Lorayne's method and ours.

Four experiments were designed to evaluate the effectiveness of the keyword method. In Experiment I all subjects were first taught the keyword for each word of a 60 -word Spanish vocabulary. Afterwards, subjects were divided into two groups to leam the English translations; the experimental group learned by using mental imagery to associate each
keyword to the corresponding English translation, while the control group used a rehearsal method to asscciate each Spanish word directly to its English translation. Experiment II was similar to Experiment I, exrrpt that it did not involve the artificial prelearning of test vocabulary keywords. Instead, subjects in the experimental group learned the keywords at the same time that they formed the imagery links, whereas control subjects used the rehearsal method to make direct associations between the Spanish words and the English translations.

Experiment III, which used a within-aubjects design, was concucted to test the keyword method against a freer control conaition. A larger and more varied test vocabulary was used and was presented to subjects over a period of many days. The experimental condition used the keyword method, and the control condition permitted the subject to use any learning strategy except the keyword method. Experiment IV was the same as Experiment III with the addition of a free-choice condition. The free-choice condition placed no constraint on how the subject learned; in this condition the subject could request a keyword whenever he wished.

EXPERIMENT I

A priori arguments in favor of the keyword method rest upon the effectiveness of mental imagery as a means of learning English pairedassociates. Experiment I was designed to detemine whether mental fmagery could be used effectively to link foreign words to their English translations after subjects had prelearned the keywords. The preleaming of keywords was accomplished by using the words and keywords
of the test vocabulary as practice items in an introductory phase of the experiment. A slide projector was used for visual presentation of each Spanish word and keyword; as the experimenter pronounced each Spanish word, a slide was displayed showing the printed Spanish word and the keyword. After the presentation of the entire vocabulary, subjects were tested for recall of keywords and given feedback. A second slide study presentation identical to the first was given followed by a repeat of the test.

Following practice on keywords, subjects were assigned to either the experimental or control group. They were then given written instructions on methods of associating foreign words to their English translations.

For the next phase of the experiment (in which the English transm lations were learned) each subject received a list of all the items of the test vocabulary; on the iist each keyword and English translation was printed next to the Spanish word. Experimental subjects were told to ignore the Spanish word (they had already learned the acoustic link in the introduction) and to concentrate on forming a mental image associating the keyword with the English translation; control subjects alternately subvocalized the Spanish word and the English translation. After the subjects completed study of the list they were then given three tests: the first tested the recall of the English translation given the spoken Spanish, the second tested the recall of the translation given the written Spanish, and the third tested the recall of the keyword given the spoken Spanish. Experiment I was the only experiment to be reported here in which subjects studied the written form of a foreign word.

Subjects. Forty Stanford Uni.versity undergraduates were used (24 males and 16 females); each was a native speaker of English and none had studied Spanish except possibly for a brief period in grammar school. None of the subjects participated in any of the other experiments reported in this paper. The rule of excluding a subject from all subsequent experiments was followed for all experiments.

Stimulus material. A test vocabulary of 60 Spanish words with associated keywords was used. An additional example vocabulary of six words with associated keywords was used in an introductory phase of the experiment. The English translations of all the Spanish words were judged, by the experimenters, to be easy to image. (See Appendix A for the test vocabulary and the example items.)

Procedures. Experimental and control subjects were run together in a single room. In the introductory phase of the experiment, subjects received training on the keywords of the test vocabulary. The first part of the introductory phase consisted of a slide presentation and practice on the example items and the test vocabuiary. An individual slide was prepared for each item: the Spanish word appeared near the center and the keyword appeared between brackets beneath the Spanish word (the English translation was not displayed). At the start of the slide presentation subjects were told that they were going to be given practice on Spanish phonetics. The sildes for the six example items were used to begin the rresentation. Each of these was displayed for 20 seconds while the experimenter pronounced the Spanish word several times, and stated once for eacn of the six slides that the keyword was
to be learned by noting a resemblance in sound between it and the Spanish word. Following the six example items, a presentation of the items of the test vocabulary was begun immediately. Each slide of the test vocabulary was displayed for 10 seconds while the experimenter pronounced the associated Spanish word. When reference is made to a spoken Spanish word, it is to mean that the word was pronounced three times with a 2 second pause between pronunciations.

After concluding the first silde presentation, a test series was given in which the experimenter spoke each Spanish item in the same order as in the slide study presentation without displaying the corresponding slide. After allowing 5 seconds for subjects to write the keyword on a numbered test sheet, the corresponding silde was displayed for 5 seconds to allow subjects to note errors. Immediately following the test se ies a second silde presentation was given in which all items of the example vocabulary and the test vocabulary were pronounced and displayed for 10 seconds each; then a second test identical to the first was given.

Subjects were then randomiy assigned to the experimentel and control conditions with the constraint that both groups contain an equal number of males and females. Subjects were given written instructions on methods for associating Spanish words to English translations. The instructions are presented in Appendix B. The experimentad instructions prescribed ignoring the Spanish word (since the link between the spoken Spanish and the keyword had already been learned) and asked the subject to image an interaction between the keyword and the English translation. (The term experimental condition is used interchangeably with keyword condition.) The control instructions stated that keywords could be used
to prompt pronunciation of the Spanish word and required the subjects to learn the English translation by alternately subvocalizing the Spanish word and the English translation. Two of the example items were used in the instructions to illustrate the appropriate method. After completing the instructions, subjects were allowed to study a practice list of the remaining four example items; each Spanish wcrd was printed at the lefthand margin, the keyword was printed between brackets beneath the Spanish word, and the English translation was printed to the right of the Spanish word. Subjects studied the list for two minutes. Then a practice test was given in which the experimentex pronounced each Spanish word and allowed the subjects 10 seconds to write the translations (no feedback was given). After the practice all of the materials were collected, concluding the introductory phase.

In the second phase of the experiment, study lists (identical for all subjects) were distributed. Each list contained all of the triples of the test vocabulary listed in the order of presentation of the slide study. Each Spanish word was printed at the left margin of the page with its keyword printed between brackets beneath it ins ine English translation printed to its right. Six items were printed in this manner on each of ten pages. Study of the lists was paced by the experimenter at the rate of 1 minute per page. After completing the tenth page, subjects were instructed to turn back to the first page for a second study pass that was paced at the rate of 30 seconds per page (total study time 15 minutes). Spanish words were not spoken during this phase of the experiment.

Following study of the English translations, all of the study materials were collected and test materials for three tests were distributed. Each of these tests involved a randomized ordering of the test vocabulary. For the first test, Test S (spoken Spanish), each Spanish word of the test vocabulary was pronounced by the experimenter and 10 seconds were allowed to write the English translation on a numbered Line. For the second test, Test P (printed Spanish), 10 minutes were allowed to write the English translations beside each Spanish word. For the third test, Test K (keyword), each Spanish word was pronounced by the experimenter, and 5 seconds were allowed to write the keyword on a numbered line. An experimental session took approximately 1 hour and 55 minutes.

Results
In the first phase of the experiment only keywords were learned. The results of the first keyword test during this phase were 64% and 67% correct for the experimental and control groups, respectively; the results of the second keyword test were 91% and 90%. There were no significant differences between groups on either test. Since subjects received identical treatment during the learning of keywords, no differences were expected.

In the second phase of the experiment, during which the English translations were-learned, results of Test S (spoken Spanish to written English) were 88% and 28% correct for the experimental and control groups, respectively ($\mathrm{t}=14.74, \underline{\mathrm{p}}<.001$). The results of Test P (printed Spanish to written English) were 88% and 32% correct, respectively $(\underline{t}=11.56, \underline{p}<.001)$. Tests S and P show clearly that the imagery link
is quite effective. The results of Test K (spoken Spanish to written keyword) were 93% and 92% correct, respectively, with no significant difference between groups. This latter result may cause some surprise since the iseyword subjects were instructed to ignore the sound (and speliing) of the Spanish word during study of the English translation, whereas control subjects were told to rehearse the sound. One might have expected that through the process of rehearsal the control group would increase its familiarity with the spoken Spanish words and thereby improve more than the experimental group in keyword recall. But such was not the case.

Figure 1 presents an item scatter plot of the test vocabulary. Each point represents the performance of a Spanish word on Test S: the abm scissa gives the probability of being correct in the control condition, and the ordinate gives the same probability in the keyword condition. For example, the word at $(0, .95)$ is bolsillo (keyword: [boli], English translation: pocket); the abscissa indicates that every subject in the control condition missed the word, and the ordinate indicates that 95% of the subjects in the keyword condition recalled the word correctiy. The word at (.15,.45) is reloj ([rail], cloch); subjects in both groups performed poorly on this word.

The ordinate of each point in Figure 1 provides a measure of how well subjects formed an imagery link between a keyword and the corresponding English translation: in other words, a measure of the strength of each imagery link. For example, lagartije ([log], lizard) is positioned at point (. $35,2.0$) and libelula ([bale], dragonfly) is at (.35,.75).

Figure 1. Scatter plot for the test vocabulary for Experiment I. Each point represents the performance levels on Test S of a word in the control and keyword conditions.

Comparing the ordinates of these words to other words on the plot, it can be seen that the imagery link between [iog] and lizard is relatively strong compared with the 3 ink between [bale] and dragonfly.

EXPERTMENT II

Experiment I demonstrated that the imagery link was effective when not confounded with the learning of the acoustic link. It remained to be seen whether the acoustic link and the imagery link can be learned simultaneously.

Experiment II was designed to test the effect of the full keyword method. The test vocabulary used in Experiment I was used in Experiment II, but a second iist (that had no words in common with the test vocabulary) was used for keyword practice in an introductory phase of the expertment. The purpose of keyword practice was twofold: (1) to introduce all subjects to the sounds of Spanish by means of contrasts between English and Spanish phonemes, and (2) to give experimental subjects practice on the leaming of acoustic links. The slide projector was eliminated in Experiment II. Instead, subjects were given a printed list of mumbered keywords; as the experimenter pronounced each Spanish word of the practice vocabulary, subjects noted the keyword on the list. After subjects had studied all items of the practice list, they turned back to the beginning of the list and repeated the study once again. Afterwards, subjects were tested for recall of keywords. Subjects were then randomly assigned to the experimental and control conditions and given written instructions on the method for associating Spanish words to English translations appropriate to the treatment condition.

In the next phase of the experiment the test vocabulary was learned. Each subject studied the same list that was used in Experiment I except that the Spanish words were deleted; the list the subject saw contained a keyword and English translation for each Spanish word of the test vocabulary. Study was paced by the experimenter who pronounced each Spanish item and ellowed a fixed time for subjects to observe the key.word and the Engiish translation. Experimental subjects used the time both to learn the acoustic link and to form an imagery link. Control subjects learned by a rehearsal method in which they alternately subvocalized the Spanish word and the English translation. Subjects were then given two tests, one to test the recall of English translations and one to test the recall of keywcrds.

Method
Subjects. Thirty Stanford University students were used as subjects (14 males and 16 females); each was a native speaker of English, and none had studied Spanish except possibly for a brief period in grammar school.

Stimulus material. The test vocabulary and example items were the same as those used in Experiment I (presented in Appendix A). An adaitional vocabulary of 60 Spanish words and their keywords wexeused for keyword practice in the introductory phase. The practice vocabulary had no words in common with the test vocabulary.

Procedures. In the introductory phase of the experimint all subfects were given practice on the learning of keywords. Each subject received a numbered list of 66 keywords, the first six of which corresponded to the exsmple words and the remaining 60 corresponded to the Spanish words of the practice vocabulary. Subjects were told that they
were going to be given practice on Spanish phonetics. The first six example items were used to explain how to leam keywords. This was done by telling the subjects to look at an item (a keyword) as the experimenter pronounced the Spanish word; subjects were told that the keyword could be learned by noting the resemblance in sound between it and some part of the Spanish word. Each of the first six items was reviewed in this way at the rate of one item every 20 seconds. Immediately after completing the sixth item, learning of the remaining 60 keywords was begun; each Spanish word of the practice vocabulary was pronounced and 10 seconds were allowed for subjects to observe the keyword. After the list of 66 keywords had been studied in this way, the process was repeated, covering 66 items at the rate of one every 10 seconds. Afterwards a test series was given in which the experimenter pronounced each Spanish word (in random order) and allowed 10 seconds for subjects to write the keyword.

After the keyword practice, subjects were randomiy assigned to the experimental (keyword) and control conditions with the constraint that both groups contain an equal number of males and females. Subjects were then given written instructions on methods for associating Spanish words to English translations. These instructions were the same as the instructions for Experiment I (see Appendix B) except that the Spanish words were not printed with the example items. The instructions stated that the expermenter would pronounce a Spanish word and allow a pause for study. Control subjects were told to note the keyword momentarily as an aid to hearing, and then leam the meaning by alternately subvocalizing the Spanish word and the English translation. Experimental
subjects were instructed to leam the keyword while the experimenter pronounced the Spanish word, and then during the following pause picture an imaginary intexaction between the keyword and the English transiation. Two of the example items were used in the instructions to illustrate the approprlate method. After completing the instructions, subjects studied a practice list of the four remaining example items; each keyword was printed between brackets at the left-hand margin and the Engilsh translation was printed to the right of the keyword. The stidy was paced by the experimenter who announced an item number, pronounced the Spanish word and allowed 10 seconds for subjects to observe the keyword and English translation. The stuay was repeated a second time; then a practice test was given in which the experimenter pronounced each Spandsh word and allowed 10 seconds for the subjects to write the transJations.

To begin the second phase of the experiment, each subject was given a Ilst of the test vocabulary. The Iist was the same as the study list used in Experiment I, except that the printed Spanish words were deleted. Each item was numbered (1-60) at the left-hand margin of the page; the keyword was printed between brackets to the right of the item number, and the English tranclation was printed still farther to the right. Six items were printed in this manner on each of ten pages. Study was paced by the experimenter, who announced an item namber, pronounced the corresponding Spanish word from the test vocabulary and allowed 10 seconds to study the keyword and English translation. Upon completing the 60 th item, subjects wem instmated to begin again with item 1 , repeating the study process exactiy as before.

Following study, the experimenter collected all materials and distributed two sets of test sheets, each with blank spaces numbered 1.60. Subjects were then given Test S (same as in Experiment I); the experimenter pronounced each Spanish word of the test vocabuiary and allowed 10 seconds for subjects to write the English translation. Next, Test K (same as in Experiment I) was given; the experimenter pronounced each Spanish word and allowed 5 seconds to write the keyword. The experiment, which was two tests shorter than Experiment I, lasted one and one-half hours.

Results
In the introductory phase of the experiment, involving practice on the leaming of keywords, the results of the keyword test were 68% and 70% correct for the experimental and control groups, respectively. Since all subjects received identicaltreatment in the keyword practice, no difference between the groups was expected.

In the second phase of the experiment, which invoived learning the test -ocabulary, the results of Test S (spoken Spanish to written English) were 59% and 30% correct for the experimental and control groups, respectively ($t=3.2, \underline{2}<.01$). The results of Test K were 69% and 53% correct, respectively ($\underline{t}=2.9, \mathrm{p}<.02$). It was not surpising to obtain a difference between the two groups on Test K, since experimental subjects were expected to learn test vocabulary keywords, whereas control subjects were not.

Figure 2 shows an iter scatter plot of the test vocabulary. Each point gives the subjects' recall of a Spanish word on Test 5 : the abscissa gives the probability of being correct in the control condition,

Figure 2. Scatter plot for the test vocabulary for Experiment II. Each point represents the performance levels on Test S of a word in the control and keyword conditions.
and the ordinate gives the same probability in the keyword condition. For example, the point ($0, .60$) represents the Spanish bolsillo ([นnll], pocket), which was learned by 0% of the control subjects and 60% of the experimental subjects. The point (.07,.60) represents the Spanish silbicio ([sili], whistle). The maverick point (.60,.20) represents libelula ([bale], iragonfly). It is interesting to conjecture why this word did so poorly in the experimental condition. It could be that subjects, in hearing the Spanish word pronounced, were unable to perceive the keyword clearly; that is, there may be a weak acoustic link between libelula and [bale]. This is not an unreasonable assumption since the pronounced word breaks into the syilables li-be-ju-la; perhaps "bay" would have been a better keyword. In any case, the poor performance on libelula contradicted our intuition that [bale] would be a good keyword, and demonstrated that effective keywords often must be determined empiricaliy. As a step toward such a determination, it would be useful to have independent measures of the strengths of both the acoustic and imagery links for each word of the test vocabulary.

EXPERIMENT III

The results of Experiment II were quite promising, but of ilmited generality because the control condition used a very special learning strategy (namely, rehearsal) and the test vocabulary involved only words that were judged easy to image. Experiment III was designed to test the keyword method against a freer control condition over a wider range of vocabulary items. A Spanish test vocabulary was selected that included words judged to be difficult to image, as well as words that were easy
to image. The test vocabulary was divided into three comparable subvocabularies for presentation on three separate days.

Another difference between Experiment III and the previous studies is that subjects were run under computer control, using equipment that also serves to provide computer-assisted instruction. Thus, this study and the next were conducted in a situation where instruction, rather than experimentation, was the focus of activity from the subject's viewpoint. The experiment was run on a PDP-10 timeshare computer system and involved a within-subjects design. Subjects received instructions from a cathode ray display scope, listened to recorded Spanish words pronounced through headphones, and typed responses into the computer by means of a console keyboard. The experiment began with an introductory session (Day 0), during which subjects were familiarized with the equipment and given instructions on leaming methods. On each of the three following days (Day 1, Day 2, and Day 3) one of the test subvocabularies was presented for study and testing. On each of these days three studytest trials were given. The study part of a study-test trial consisted of a run through the subvocabulary; each Spanish word was pronounced, and for 10 seconds either (1) the keyword and English translation were displayed, or (2) the English translation alone was displayed. In the first case, subjects learned by the keyword method; in the second case they could use any method they chose except the keyword method. A test trial consisted of a run through the subvocabulary in which each Spanish word was pronounced and 25 seconds were allowed to type tile English translation.

A test covering all the items of the test vocabulary was given two days after the presentation of the last subvocabulary (Comprehensive Test), and a similar test was given approximately one month later (Delayed Comprehensive Test).

Method
Subjects. Thirty-two Stanford University undergraduates were used (20 females and 12 males). Each spoke English as the native language and none had studied Spanish except possibly for a brief period in grammar school.

Stimulus material. A test vocabulary of 120 Spanish nouns with associated keywords was selected (the test vocabuiary is presented in Appendix C). Thirty of the Spanish words had English translations that were easy to image, and 30 had English translations that were difficult to image. Imageability was determined both by the judgment of the experimenters and the Paivio ("Imagery and familiarity ratings for 2448 words: Unpublished norms") image values for those English words for which values were available. The average Paivio value for words in the high image group was 6.4, and the average in the low image group was 3.6. The other 60 words had a mean valus between these two extremes. The test vocabulary was diviad into trree comparable subvocabuiaries of 40 words each, matched (by judgment of the experimenters) in abstractness and imageability, for presentation on separate days.

Procedures. The purpose of the first session (Day 0) was to introduce each subject to the computer terminal and provide practice on the keyword method. The experimenter showed each subject how to start the program that conducted the experiment. The program itself explained
a11 of the remaining procedures of the experiment. The program, after giving instructions on the use of the keyboard and the audio headset, introduced keywords as a meens of focusing attention on the sound of a Spanish wori. Practice was given on a randomized list of 30 words (not included in the test vocabulary); a Spanish word was spoken and its bracketed keyword was displayed for 5 seconds. Afterwards, a test (randomized for each subject) was given in which each Spanish vora was spoken, and 10 seconds were allowed to start typing the keyword. If a response was begun within 10 seconds, the time period was extended from 10 to 15 seconds; otherwise, the program advanced to the next item. All of the tests in both Experiments III and IV were timed in this wey. A second randomized study of the 30 practice words was given, followed by a newly randomized test.

After the keyword practice, written instructions (reproduced in Appendix D) were given on learning methods. The instructions explained that two approaches were to be used in learning the meanings of Spanish words: in one case, while a Spanish word was being spoken, a bracketed keyword would be displayed at the left-hand margin of the screen and the English translation would appear to its right. In this condition, the keyword condition, the subject was instructed to learn the keyword first and then picture an imaginary interaction between the keyword and the English translation. In the other condition, while the Spanish word was being spoken, only the English translation would be displayed. In this condition, the control condition, subjects were told to leam by any method other than by using a keyword with mental imagery.

After the instructions were given, a practice study trial of ten Spanish words was given in which each Spanish word was spoken and either the keyword with the English translation, or the English translation alone, was displayed. Following this a test trial was given in which each Spanish word was spoken and the subject attempted to type the English translation. A second study trial was given and was followed by a second test trial, concluding Day 0 .

Subjects returned the following day for the Day 1 session of the experiment. For each subject the computer program randomly selected one of the three 40 -word subvocabularies for study, and randomiy assigned haif of the words to the keyword condition and the other half to the control condition. Day 1 consisted of three successive study-test trials. The study trial was exactiy like the practice study trial at the end of Day 0 : each Spanish word was spoken while either the keyword and English translation, or the English translation alone, were displayed. For both conditions, the presentation was timed for 10 seconds. On a test trial, a Spanish word was spoken and the subject was given 10 seconds to initlate a response. No feedback was given. An incomplete or misspelled response was scored as incorrect.

Day 1, Day 2, and Day 3 (which fell on consccutive days) followed identical formats. The only difference was that each day involved a different randomly assigned subvocabulary.

The Comprehensive Test followed two days after Day 3. The Comprehensive Test was exactly like a daily test trial, except that it covered the entire 120 -word test vocabulary. Immediately following the Comprehensive Test a self-paced on-line questionnaire was given to gather
testimony on the method of study used for each word. Each word of the test vocabulary was spoken and the subject was asked to indicate which one of seven modes he used to study the given word. The choices were as follows:

1. I used the GIVEN keyword to study this word, and I can recall the image/verbiage.
2. I used the GIVEN keyword to study this word, but I cannot recall the image/verbiage.
3. I used MY OWN keyword to study this word, and I can recall the image/verbiage.
4. I used MY OWN keyword to study this word, but I cannot recall the image/verbiage.
5. I leamed this word because it sounds like a word I know in another foreign language.
6. I used some other method than the ones listed above.
7. I can't remember how I studied this word.

Wherever the subject selected a number between 1 and 4 , the program required him to indicate (by typing I or V) whether he had used imagery or a verbal construct (verbiage) to Iink the keyword to the English translation. An example was given to help clarify the distinction: pollo, pronounced somewhat like poi-yo, might use "oil" as a keyword. If the English translation of pollo (chicken) were studied by memorizing the phrase "chicken ofi," then a verbal construct was used. On the other hand, if an imaginary picture were formed of a chicien being squirted by an oil can, then mental imagery was used. Five learning modes were defined for later analysis of the questionnalre: (a) Image Mode referred to an instance in which a subject selected $2-4$ on the questionnaire and specified that he had used mental imagery to associate the keywurd to the

English transiation, (b) Verbiage Mode referred to an instance in which 1-4 was selected and a verbal construct was used to associate the keyword to the English translation, (c) Cognate Mode referred to an instance In which 5 was indicated, (d) Other Mode meant that a subject selected 6 , and (e) Don't Remember meant that the 3ubject selected 7 .

For the sixth and final session (the Delayed Comprehensive Test), subjects were called back about 25 to 35 days (average 30 days) from . Day 0 to take a randomized repeat of the Ccmprehensive Test. Subjects had not been forewarned that they would be tested at a later date. Results

The results of the Comprehensive Test were 54% and 45% correct for words in the keyword and control conditions, respectively (paired $t=4.1$, $\mathrm{g}<.001$). Although the differences were not as great as in Experiment II, they were substantial and were stilil evident on the Delayed Comprehensive Test. The results of the Delayed Comprehensive Test were 43% and 35% correct, respectively (paired $\underline{t}=3.5, \mathrm{p}<.01$).

Figure 3 gives the performance levels of words learned in each condition for the three test trials on Day 1 , Day 2, and Day 3. The keyword method is superior in all cases. Table 1 shows a breakdown of the Comprehensive Test and the Delayed Comprehensive Test into the performance levels of words that had been studied on Day 1 , Day 2 , and Day 3.

The questionnaire data were analyzed to determine the types of learning strategies subjects used in studying the test vocabulary. Only words that were correct on the Comprehensive Test were analyzed. Table 2 shows the percentages of words learned in the three principal modes (Image, Vexbiage, and Cognate) and the remaining altematives (Other

Figure 3. The performance levels in Experiment III for each condition on Day 1, Day 2, and Day 3.

Table 1
Probability That a Word was Correct on the Comprehensive Test as a Punction of the Treatment Condition and the Day on Which it Was Studied

	Comprehensive Test	Delayed Comprehensive Test		
	Keyword	Control	Keywora	Control
Day 2	.44	.35	.42	.32
Day 2	.52	.44	.42	.33
Day 3	.65	.57	.46	.41
Average	.54	.45	.43	.35

Table 2
Likelihood of Selecting a Given Leaming Mode as a
Function of the Experimental Conaition

	Cognate	Image	Verblage	Other	Don't Remember	Total
Keyword	13	56	20	6	5	100%
Control	23	19	24	26	8	100%

and Don't Remember) described in the Methods Section. Note that the Image Mode was selected more frequently for words in the keyword condition, whereas the Cognate and Other Modes were selected more frequently in the control conalition. This probably occurred because the control condition permitted the subject more freedom than the keyword condition to discover and use cognate relationships, and other means of remembering words. It was surprising to see the frequency with which the Image Mode was indicated in the control condition (19%), particularly since subjects were told not to use the keyword method in the control condition. Since a keyword is involved in both the Image and Verbiage Modes, an estimate of the extent to which keywords were used can be extracted from Table 2; by adding the percentages for Image and Verbiage (and not counting keywords that might have beer. used in the Other and Don't Remember Modes), we find that keywords were used for at least 43% of the words in the control condition. Although this percentage may be infiuenced by the keyword condition, it suggests that effective leaming of a secondlanguage vocabulary necessarily invoives the use of native language mediators (such as keywords).

The high and low imageability words of the test vocabulary were analyzed to detemine the effects of treatment upon image values. Table 3 gives the performance levels for these words, categorized by the keyword and control conditions. The keyword method is superior at both levels of imageability, but a greater relative advantage is obtained for words of high image value. Image value did not make a difference within the control condition, even though according to Table 2 a substantial number (19%) of the words in the control condition were learned by the image-keyword method.

Table 3
Probability of Being Correct on Test S for Words of High and Low Imageability

	High Imageability	Low Imageability
Keyword	.56	.50
Control	.44	.45

Figure 4 gives an item correlation plot of the words in the test vocabulary; each poi. $\%$ gives perfomance on a word averaged over the Comprehensive Test and the Delayed Comprehensive Test. The abscissa gives the probability of getting the word correct in the control condition, and the ordinate gives the same probability in the keyword condition. For example, the word at (.09,.42) is provecho ([pro-basebaj1], profit); its. probability of being correct on the comprehensive tests was . 09 if the word had been presented in the control condition, and. 42 If it had been presented in the keyword condition. The word at (.73,.20), mes ([mace], month), did especialiy poorly in the keyword condition; the word mace was probabiy too obscure, provicing another example of the need for an empirical check when selecting keywords. Figure 4 indicates that, while most words were effectively learned in the keyword condition, many were not. It would be useful to know what factors account for the differences among words. To deal with thic question, each test word was ranked by the signed difference between its probability of being correct on the comprehensive tests when in the keyword condition and its probebility when in the control condition. The top and bottom 20 words in the ranking were examined with regard to the questionnaire data. The Top20 words are those that were best learned under the keyword condition, and the bottompo are those best learned under the control condition. Table 4 presents the study mode percentages for the Top20 and Bottom20 words. These results suggest that the Bottom20 contains more cognates, whereas the Top20 contains more words learned by the keyword method.

A tentative explanation of why Top20 and Botom20 words diverge in performance under the two conditions can be developed along the following

Figure 4. Scatter plot for the test vocabulary of Experiment III. Each point represents the performance levels of a word averaged over the Comprehensive Test and the Delayed Comprehensive Test.

Table 4

Likelihood of Selecting a Given Learning Mode for Top20 and Bottom20 Word Groupings

	Cognate	Image	Verbiage	Other	Don't Remember	Total
Top20	6	40	16	7	31	100%
Bottom20	27	26	18	11	28	100%

Ines: it seems likely that neither the Top20 nor Bottom20 contains words for which obvious cognates exist. An example of a word from the test vocabulary that has an obvious cognate is guerra (.95,.85), which has the same meaning as the French word guerre (war). Many of the subjects had studied French. The reason that such a word would not be found in the Bottom20 or the Top20 is that it would be learned in the obvious way and receive higk scores in both conditions. Thus, the cognate relationm ships found in the Bottom20 and the Top20 must be of a more covert kind, such as exist between the test word viajero (.13,.43) and the Italian via (meaning traveler and road, respectively). Also, neither set of words should contain items that suggest obvious keywords and imagery, such as cama ([comma], bed) at $(.84, .93)$, since these, too, would yield high scores under both experimental conditions. Therefore, it seems reasonable to assume that a charactexistic of many Bottom20 words is that they are covert cognates that cannot be learned easily using the keyword method. When these woris are presented in the keyword condition, subjects try to Iearn them by the keyword method; since no obvious alternative means of learning comes to mind, they are not learned very effectively. However, when these words are presented in the control condition, subjects engage In a search for memory aids until the cognate relationships are discovered, and thereby learn effectively. As noted in the discussion of Table 2, cognate relationships are more frequently discovered in the control condition than in the keyword condition.

The same type of argument would explain the divergent effects on the Top20 words of the keyword and control conditions. The argument assumes that in the Top20 group there are relatively few cognates but
many words that can be learned by nonobvious application of the keyword method. Therefore, these words will be leamed effectively in the keyword condition, since keywords are provider and subjects are trying to use the keyword method. But in the control condition (where subjects are trying to avoid the keyword method) no obvious keyword and imagery spring to mind. Moreover, the cognate relationships are scarce and obscure, leaving no altemative but to leam by rote rehearsal. The explanation outined above, while speculative, has some support in the data. Further, it suggests that the keyword method would be particularly effective for languages that have few cognates in English, such as Russian and Japanese.

EXPERIMENT IV

Experiment IV was like Experiment III, except that a free-choice condition was added. The free-choice condition permitted the subjects to use whatever learning strategy they preferred, incluaing requesting a keyword when desired. As a word was being pronounced in the freechoice condition, empty brackets were displayed to the left of the English transiation. A subject could cause the keyword to appear by pressing an appropriate key on the console.

Method
Subjects. Twenty-five Stanford University undergraduates were used (16 males and 9 femalt:s). All were native speakers of English and none had studied Spanish except possibly for a britif period in grammar school. Apparatus and stimulus material. The sare as in Experiment III.

Procedure. A third condition, the free-choice condition, was added to the keyword and control sonditions of Experiment III. In this condition, when a Spanish word was pronounced, empty brackets were alsplayed at the left-hand margin of the display screen and the English transiation was displayed to the right. If the subject pressed the RETURN key, then the computer filled the empty brackets with a keyword.

The printed instructions for Day 0 were modified to inciude a statement saying that when a word was presented with empty brackets, "You may study the word using any technique you prefer; if you want the computer to suggest a keyword, press the RETURN key and a keyword will appear in the brackets." The practice vocabulary (employed on the study-test trials of Day 0) was augmented to include two more woxds that were presented in the free-choice condition.

The algorithm that randomily assigned test words to the keyword and control conditions on Day 2, Day 2, and Day 3 of Experiment III was modified to assign (for each sublist) 20 words to the keyword condition, 10 words to the control condition, and 20 words to the free-choice conm dition. The Comprehensive Test was given on the day following Day 3 ; the Delayed Comprehensive Test was omitted.

Results
The percentages of correct responses on the Comprehensive Test were $59 \%, 57 \%$, and 50% correct, respective $1 y$, for words in the free-choice,
 was employed to make painwise comparisons; the freenchoice and keyword conditions were both significantly different from the control condition
at the .05 level, but they were not significantly different from each other.

The results of the three daily test trials (averaged over days) can be seen in Figure 5; the leaming curves are similar to those in Figure 3. The relationship between treatment conditions and imageability is given in Table 5; note that the keyword condition is the only condition affected by imageability. We will have more to say about Table 5 . later.

Table 6 presents results from the questionnaire dealing with learning modes; only data for words that were correct on the Comprehensive Test are included. Note that more cognate relationships were exploited in the control condition than in the keyword condition; also, the Image and Verbiage modes were used quite frequently in the control condition. The same effects were reported in Experiment III. Cognate and Verbiage percentages were higher in the free-chofee condition than in the keyword condition, indicating that subjects used the freedom of the free-choice condition to employ techniques other than the keyword method. The use of keywords in each of the treatment conditions can be estimated by noting that keywords were involved in both the Image and the Verbiage Modes; adaing the entries for these two modes given in Table 6 yields $83 \%, 79 \%$, and 44% for the keyword, free-choice, and control condition, respectively. It appears that keywords were used almost as often in the free-choice condition as in the keyword condition; keywords also were used for nearly half of the items in the control condition.

Figure 6 presents the probability of a keyword request as a function of study trials. An item analysis revealed that keyword requests were

Figure 5. Probability of a correct response as a function of the trial number in Experiment IV; results averaged over days.

Table 5

Probability Correct of the High and Low Imageability Words on the Comprehensive Test

	High Imageability	Low Imageability
Keyword	.63	.55
Free-choice	.58	.59
Control	.48	.50

Table 6
Likelihood of Selecting a Given Learning Mode as a Function of the Experimental Condition

	Cognate	Image	Verbiage	Other	Don't	Remember
	Total					
Keyword	7	62	21	5	5	100%
Free-choice	10	53	26	9	3	100%
Control	18	25	19	32	6	100%

Figure 6. Probability of a keyword request as a function of the trial number in the free-choice condition of Experiment IV; results averaged over days.
more probable if the subject missed the word on the preceding test trial than if he was correct. If a subject responded incorrectly (correctiy) to a word on test trial 1 , then with probability .77 (.54) he requested a keyword for that item on study trial 2. Likewise, the corresponaing probability was $.60(.39)$ for a keyword request on study trial 3, given an incorrect (correct) response on test trial 2.

The results cited above suggest that keyword requests are more likely for difficult items. To examine this issue from a different perspective, we analyzed each free-choice word with respect to (a) the number of keyword requests the subject made for that word, (b) the subject's recall of the word on the Comprehensive Test, and (c) the "difficulty" of the word. Difficulty was defined as the probability of an error in Experiment III, where the probability was averaged over both treatments ard both the Comprehensive and Delayed Comprehensive Tests. The freechoice words were then divided into four categories depending upon the number of keyword requests made for that word on its three study trials.

Table 7 presents results from the analysis, categorized by the number of keyword requests. For 8% of the words the subject made no keyword requests; for 92% of the words at least one or more requests were made during the course of the three study trials. Note that the number of keyword requests is negatively correlated with perfomance on the Comprehensive Test; the more keyword requests a subject made, the poorer was his recall for that item. But this is not a cause-and-effect relationship as is indicated by the difficulty measure given in the last column of Table 7. Difficulty level is based on data from Experiment III and provides an independent estimate of how difficult an item is to learn.

> Table 7
> Information about the Free-choice Words as a
> Function of the Number of Keyword Requests

	Number of keyword requests			
	0	1	2	3
Percentage of free- choice words	8	23	27	42
Probability correct on Comprehensive Test	.82	.67	.59	.51
Difficulty level	.47	.53	.56	.57

For this measure, we see that number of keyword requests increases as difficulty increases. Thus, the number of keyword requests is positively related to the actual dificulty of an item, but negatively related to a subject's recell of the item. Items with zero requests were most easily learned, and the questionnaire data indicates that many were mastered using cognates. For the more difficult items there are no obvious learning strategies other than the keyword method, thus accountIng for the frequency of keyword requests.

DISCUSSION

Experdments I and II demonstrate that the keyword method produces better recall than a rehearsal strategy. Experiment III demonstrates that recall with the keyword method is also superior to recall under a control condition where subjects were asked to learn by any means except the keyword method. The latter result is ali the more striking, since subjects reported (in spite of instructions to the contrary) that they often employed the keyword method to learn words in this condition. Experiment IV added a Iree-choice condition to Experiment III that allowed subjects to learn by any strategy and, in addition, permitted them to request keywords whenever desired. Both the free-choice and keyword conditions were superior to the control condition, but not significantiy different from one another. An item analysis of the freechoice condition revealed that subjects requested a keyword at least once for 92% of the test words; further, the number of requests per item was positively correlated with word difficulty. In the work reported here the keyword method proved to be an effective means of learning a
foreign language vocabulary. Although the test vocabularies were restricted to nouns, the method is equally applicable to verbs, adjectives, and adverbs.

It was evident from pilot studies preceding these experiments that several variations of the keyword method were possible. Our earlier experfences led us to make the following procedural decisions for the experiments reported here:

1. It is better to have the experimenter provide keywords than to have the subject generate his own. This is particularly true for subjects who are unfamiliar with the phonetics of the foreign language: the keywords, by offering contrasting sounds, help the beginner to distinguish the phonemes of the foreign language.
2. With regard to the imagery link, the opposite appears to be the case: it is better to have the subject generate his own image than to provide a written suggestion. This observation corresponds to results reported by Bower (1972), indicating that natural language mediators are more effective in the learning of paired-associates if they have been generated by the subject rather than provided by the experimenter.
3. The guiding principle of keyword selection is to approximate enough of the sound of each foreign word to distinguish it from other words of the list; it is not necessary to approximate the full sound of the foreign word. In pilot work, we employed a procedure in which a keyword or keyword phrase was used to span the full sound of the foreign word. For example, "pie saw hay" was used for paisaje, and "race free auto" was used for resfriado. This procedure did not work well, possibly because subjects had too much difficulty in forming an inage complex
enough to meaningfully relate all of the keywords and the English translation. The keywords in the present experiments are almost all monosyllables, whereas most of the Spanish words are polysyllables.
4. We did not evaluate the keyword method with regaxd to the recall of a Spanish word given its English translation. Such an evaluation (requiring that subjects he taught to pronounce or spell Spanish words) was fudged to be too complicated at this stage of research. Pilot work, however, indicated that the keyword method would be highly erfective in the recall of Spanish words when used by subjects somewhat familiar with Spanish. Our experience suggests that when a mediating keyword is used for retrieving a foreign word, the keyword should (when all other factors are equal) emphasize the initial syllable of the foreign word; for example, "cob" rather than "eye" might be used as the keyword for cabalio.

Data on individual items indicate that some of the keywords used in the experiments were poor choices. Whenever possible keywords should be determined by empirical means, or at least by a committee familiar with the method, rather than by a single individual. An empirical procedure for eveluatirg keywords could be based upon measures of "link strength," for both the acoustic and memonic links. The acoustic link could be measured by tratning a group of subjects on only the keywords of a test vocabulary, as was done in the first phase of Experiment I. Forward link strength can be defined as the percentage of subjects who recall the keyword from the spoken word, and backward link strength by the percentage of subjects who recall the Spanish word given the keyword. The mnemonic link can be measured in a similar way, using different subjects. Subjects would be given a list of keyword-translation pairs and instructed
to learm them using imagery. Forward and backward link strengths c ould then be estimated using the keyword or English translation, respective $2 y$, as test stimuli. Link strengths might provide a means of ascribing keyword failings to acoustic or mnemonic factors, and contribute to an understanding of variables underlying word difficulty. It would be interesting to determine the extent to which estimates of link strengths could be used to predict performance in the keyword condition.

The experimental results reported here suggest that the keyword method might be improved by generalizing our conception of a memonic Iink. Some subjects indicated in interviews that the fmagery procedure proved on occasion to be too restrictive, and cited instances where a verbal construct would have been preferable. The word pulgada ([god], inch) is an example; it is easier to think of a phrase like "pull god an inch," or "god won't bucige an inch," than to try to form an image relating god and inch. In fact, Table 6 indicates that subjects employed more verbal constructs and fewer imagery links in the freemchoice condition than in the keyword condition; Table 5 suggests that the freemoholce condition is superior to the keyword condition for low image words (like pulgada), but inferior for high image words. It appears that verbal constructs are more effective than imagery for words of low image value.

There are other techniques, besides imagexy and verbal constructs, for associating keywords to English translations: for example, rhyme, alliteration, cadence, or synonymy. And there are other links besides the acoustic link for associating the foreign word to the keyword (the orthographic link, for example). When used by a skilled leamer, these additional variations may improve the keyword method; however, they are
iine points of the method, and it is doubtful that beginners would profit from instruction in their use.

It is interesting to speculate on the potential applications of the keyword method in a foreign language curriculum. One possibility is that the keyword method could be used in a special computerized "vocabulary program," supplementing an introductory language course. The purpose of the program would be to provide the student with an individualized procedure for rapidiy expanding his vocabulary, using optimal sequencing schemes of the sort investigated by Atkinson (2972). The best arrangement would coordinate the vocabulary program with other components of the curriculum; in such an arrangement, the idiomatic usage of words acquired in the vocabulary progran could be developed in the regular curriculum using pattem drills and various forms of context practice.

In deciding whether to use the keyword method, several problems need to be considered. One problem is that keywords might interfere with correct pronunciation. Our experiments do not deal with this issue, but we have discussed it with a number of experts on language instruction. Although opinions vary, most belleved that the keyword method might well facilitate, rather than interfere with, pronunciation. The keyword method has features in common with the method of "contrasting minimal pairs"-a standard technique for teaching phonetics by contrasting words that differ siightly in pronunciation. Further, if the practical use of a language is the principal goal, then effective vocab-ulary-acquisition methods should be used even if they do interfere with pronunciation. Another problem to be considered in using the keyword method is whether items learned in this way will be retrieved more
slowly, particularly once the item has been thoroughly mastered. Again we have no direct evidence on this point, but our experience with the method suggests that it should not be a problem. Once an item has been thoroughly learned, it comes to mind immediately, and rarely is the leamer aware of the related keyword unless he makes a conscious effort to recall it. Experiments need to be done on this point, but introspective reports suggest that the keywori will not interfere with retrieval once an item has been mastered.

In conclusion, we should note that many of our subjects had studied at least one Romance language; consequently, they were able to learm some of the Spanish words by using cognates as memory aids. It would be intexesting to evaluate the keyword method on a language, such as Russian or Japanese, that has few cognates. We plan to conduct a series of studies applying the keyword method to Russian; these studies will be like those reported here, but more of an effort will be made to explore the problems of adapting the method to ciassroom use.

Atkinson, R. C. Ingredients for a theory of instruction. American Psychologist, 1972, 27, 921-931.
Bower, G. Mental imagery and associative learning. In L. Gregg (ed.), Cognition in learning and memory. New York: Wiley, 1972.
Bugelski, B. R. Images as mediators in one-trial paired associate learning. II Self-timing in successfve lists. Journal of Experimental Psychology, 1968, 7I, 328-334.
Butler, D. C., Ott, C. E., \& Blake, R. S. Cognitive scaffolaing in the learning of foreign language vocabulary: An experimental study. Paper presented at the Association for Educational Communications and Technology Convention in Las Vegas, April, 1973.

Furst, B. Stop forgetting. New York: Garden City Books, 1949.
Hughes, J. P. Linguistics and language teaching. New York: Random House, 1968.
Lorayne, H. How to develop a superpower memory. New York: Fell, 1957. Paivio, A. Imagery and verbal processes. New York: Holt, Rinehart and Winston, 1971.

Yates, F. The art of memory. Chicago: University of Chicago Press, 1972.

APPENDIX A

The Example and Test Vocabularies of
Experiments I and II*

Example Vocabulaxy

Spanish		Keyword	
		Translation	
JAULA	[howl]		CAGE
REGAZO	[ray]	LAP	
INVIERNO	[Inferno]	WINIER	
SABANA	[sob]	SHEET	
CABALIO	[eye]	HORSE	
MORSA	[morsed]	WALRUS	

Test Vocabulary

Spanish	Keyword	Transiation	Performance	
			Keyword	Control
CORDERO	[cord]	LAMB	. 67	.13
GUAJALOTE	[hall]	TURKEY	. 27	. 13
HUEVO	[wave]	EGG	. 67	. 60
TIJERAS	[t-hairs]	SCISSORS	. 67	. 47
SILBIDO	[sid2]	WHISTIE	. 60	. 07
PISO	[pea]	FLOOR	. 60	. 33
RELOJ	[rail]	CLOCK	. 07	. 13
CHARCO	[charcoal]	PUDDIE	. 80	. 27
cabra	[cob]	GOAT	. 47	. 27
BOMBERO	[bomb]	FIREMAN	. 87	. 53
TOALIA	[toe-eyed]	TOWEL	. 80	. 27
cubeta	[cube]	PAIL	. 47	. 20
BOLSILLO	[boll]	POCKET	. 60	. 00
PALANCA	[pali]	CROWBAR	. 27	. 00
azuejo	[z00]	TILE	. 40	. 13
clavo	[claw]	NAIL	. 53	. 27
ARENA	[rain]	SAND	.67	. 47
muneca	[moon]	DOL	.67	. 20

*Performance on Test S of Experiment II is given for both the keyword and control conditions.

Spanish	Keyword	Translation	Performance	
			Keyword	Control
HELADO	[ale]	ICE CREAM	. 27	. 23
gusano	[goose]	WORM	. 60	. 13
PIRABRISAS	[breezes]	WINDSHIELD	. 60	. 60
TENEDOR	[ten-door]	FORK	. 60	. 20
ARROZ	[a rose]	RICE	. 80	. 73
BARRO	[bar]	MUD	. 67	. 20
TALTARIN	[tıe]	NOODLE	. 53	. 27
POLVO	[pole]	DUST	. 47	. 40
LAGARIIJA	[10g]	LIZARD	. 60	. 20
MALETA	[maliet]	suttcase	. 73	. 33
CARACOL	[car]	SNAIL	. 47	. 13
PATO	[pot]	DUCX	. 73	. 07
CIERVO	[sierra]	DEER	. 47	. 53
BODILIA	[road]	KNEE	. 60	. 13
PRADO	[prod]	NEADOW	. 60	. 40
OBRERO	[brer]	WORKER	. 73	. 73
CEBOLIA	[boy]	ONION	. 60	. 40
MEDANO	[maid]	DUNE	. 40	. 40
NABO	[knob]	TURNIP	. 60	. 33
SAPO	[sop]	TOAD	. 47	. 23
PAYASO	[pie]	CLOWN	.67	. 20
AJEDREZ	[head-dress]	Chess	. 87	. 67
HILO	[eel]	THREAD	. 80	. 40
LATA	[10t]	TIN CAN	. 67	. 20
TRIGO	[tree]	WHEAT	. 73	. 13
POSTRE	[post]	DESSERT	. 60	. 40
MOSCA	[moscow]	FLY	. 87	. 87
CAMA	[comma]	BED	. 87	. 67
CHISPA	[cheese]	SPARK	. 73	. 47
BUTACA	[boot]	ARMCHAIR	. 53	. 20
ZARAGUELJES	[czar]	OVERALIS	. 67	. 20
ESPALDAS	[bala]	BACK	. 27	. 20
MULETA	[mule]	CRUTCH	. 67	. 20
PESTANA	[pest]	EYELASH	. 73	. 13
COMEDOR	[comb]	DINING ROOM	. 60	. 73
CARDO	[card]	THISTLE	. 60	. 13
SALTAMONTES	[salt]	GRASSHOPPER	.27	. 20
TENAZA	[tennis]	PLIARS	. 40	. 20
PULGADO	[pool]	INCH	. 80	. 23
JABON	[bone]	SOAP	. 80	. 33
LIBELULA	[bale]	DRAGONFLY	. 20	. 60
CARPA	[carp]	TENT	. 73	. 33

APPENDIX B

Instructions to the Experimental and Control Groups for Experiment I

Instructions to the Experimental Group in Experiment I

please read these instructions quietiy to yourself. Different suijects have different Instructions. PLEASE DO NOT ASK QUESTIONS.

On the following pages you will find the Spanish words that you studied earlier. To the Hight of each Spanish word is its English translation. Directly beneath each Spanish word is the bracketed keyword that you learned in the first half of the experiment. Remember this English keyword is only a ciue to the pronunciation of the Spanish word and has nothing to do with its meaning.

REMIEMBER, THE TRANSLATION IS TO THE RIGHT OF THE SPANISK WORD AND THE KEIWORD IS IN BRACKETS DIRECTLY BENEATH THE SPANTSH WORD.

Your task now will be to learn the translations of the Spanish words USING THE KEYWORD METHOD. This method can be explained best by examples:

```
1. CABAILO
HORSE
[eye]
```

Iten 1 above states that the Spanish word CABAIIO means horse, and the keyword provides a partial reminder that the Spanish word is prom nounced "cob-eye-yo." You should already know this keyword from your previous practice. A simple way to recall that the word CABALIO means HORSE would be to imagine an interaction between an eye and a horse. For example, you might imagine any one of the following:

1. Your own eye being flicked by the tail of a horse,
2. One cyclopean eye winking in the forehead of a horse,
3. A giant eye being kicked by a horse.

Any of these images could help you to recall that CABALLO means horse. Or you could easily create other images to suit your taste. The point is that it is EASY to create them, and, NO MAMTER KOW ILLOGICAL the images may seem to you, they are powerful memory aids.

THE STRATEGY YOU SHOULD EMPLOY FOR LEARNING THE MEANING OF A SPANISH WORD, THEN, IS TO

FIRST: IGNORE THE SPANISH WORD; YOU HAVE ALREADY STUDIED IT SUFFICIENILY IN THE INTRODUCTORY PHASE OF THE EXPERIMENT.

SECOND: USE YOUR TIME CREATIVELY BY MAKING DISTINCITVE MENTAL IMAGES FOR THE KEYWORD AND TRANSIATION, THFNV MAKE THEM INIERACT IN A GRAPHIC WAY. FOR THIS INTERACIION STICK TO ONE GOOD PICTURE--DO NOT CONFUSE YOURSELF BY TMAGINING MORE THAN ONE INTERACIION.

This strategy forces you to ignore the Spanish word in order to focus entirely on its keyword and translation. Since you have already learned to recognize the keyword in the Spanish word, the keyword will provide a link from the Spanish word when you need it. DO NOT WASTE YOUR TITME PRACTICTNG TLE SPANISH-KEYWORD ASSOCIATIONS ANY MORE. USE YOUR TIME IN THIS STAGE CREATIVELY. THE PURPOSE OF THIS STAGE OF THE EXPERIMENT IS TO CREATE THE INTERACTIVE IMAGES RELATING KEYWORDS TO TRANSLATIONS.

As a second example consider the Spanish word MORSA:
2. MORSA WALRUS
[morsel]
To connect the keyword "morsel" to WALRUS, you could imagine yourself eating a gigantic morsel on a walrus-tusk toothpick, or you could
picture a whale spitting up morsels of walrus. VISUALTZE THE SCENE AS VIVIDLY AS POSSIBLE. MAKE THE IMAGE GRAPHIC. Then when you hear the word MORSA, you should recognize the sound of MORSEL within it and use the remembered inage to recall that MCRSA means Whiunus.

REMEMBER, KEYWORDS ARE CLUES TO PRONUNCIATION. DO NOT CONFUSE MTEM WITH TRANSLATIONS. In a moment you will have an oppo tunity to practice - the image method on five words that you have already stwdied. But first, go back and review the capitalized statements, then read the advice on the following page.

LAST MIIUTE ADVICE:

1. IGNORE THE SPANISK WORD. Cover it with your thumb, if that will help. Instead,
2. Concentrate entirely on making INMERACIVE IMAGES to connect the keywords to the English translations.

Instructions to the Control Group in Experiment I
Please read these instructions quietly to yourself. Different subjects have different instructions. PLEASE DO NOT ASK QUESTIONS.

On the following pages you will find the Spanish words that you studied earliex. To the right of each Spanish word is its English translation. Directly beneath each Spanish word is the bracketed keyword that you learned in the first half of the experiment. Remember, this English keyword is only a clue to the pronunciation of the Spanish word and has nothing to do with its meaning.

REMEMBER, THE TRANSIATION IS TO THE RIGHT OF THE SPANISH WORD AND THE KEYWORD IS IN BRACXETS DIRECTLY BENEATH THE SPANISH WORD.

Your task now will be to learn the translations of the Spanish words USING THE METHOD OF REPETITION. This method can be explained best by examples:

```
1. CABALLO HORSE
    [eye]
```

Item 1 above states that the Spanish word CABALIO means horse, and the keyword provides a partial reminder that the Spanish word is pronounced "cob-eye-yo." You shouid already know this keyword from your previous practice. Use this keyword to remind yourself of the pronunciation of the Spanish word, but do not waste time relating the Spanish word to its keyword. Instead, once you have learned the pronunciation, practice saying the Spanish word to yourself followed by its English equivalent. Alternate back and forth between the Spanish and the English several times, then move on to the next item.

For example, in the case of CABALIN above, use the keyword to remind yourself that the second syllable of the word sounds like the English word "eye." That will help you to recall that the word is pronounced "cob-eye-yo." Now subvocalize the series "caballo - horse - caballo horse - caballo - horse."

THE STRATEGY YOU SHOULD EMPLOY FOR LEARNING THE TRANSLATION OF A SPANISH WORD, THEN, IS TO

FIRST: OBSERVE THE KEYWORD ONCE TO GET THE CLUE TO THE PRONUNCIATION OF THE SPANISH WORD. THEN IGNORE THE KEYWORD IN order to devote as much ttme as possible to the main task, WHICH IS TO,

SECOND: PRONOUNCE THE SPANISH WORD AND ENGLISH TRANSLATION QUIETLY TO YOURSELF. DO NOT SPEAK OUT LOUD. ALTERNATE BETWEEN THE SPANISH WORD AND ENGLISH TRANSLATION SEVERAL TIMES, THEN MOVE ON TO THE NEXT ITEM. YOU MAY DEVOTE EXTRA TIME TO RECYCLING OVER PREVIOUS ITEMS.

This strategy exploits your knowledge of the keywords in order to practice associating the SOUND of a Spanish word with its English translation. DO NOT WASTE YOUR TTME ON THE SPANISH SPELLING; INSTEAD, CONCENTRATE ON PRONOUNCING THE SPANISH AND ENGLISH WORDS REPETITIVELY TO YOURSELF.

As a second example, consider the Spanish word MORSA:
2. MORSA WALRUS
[morsel]
The keyword "morsel" provides a reminder of the sound and rhythm of the Spanish word. Practice quietly repeating the Spanish word and English equivalent to fix them together in your memory: "morsa - walrus morsa - walrus - morsa - walrus."
fENEMBER, KEYWORDS ARE PRONUNCIATION CLUES. DO NOT CONFUSE THEM WITH TRANSLATIONS. In a moment you will have an opportunity to practice the repetition method on five words that you have already studied. But first, go back and review the capitalized statements, then read the advice on the following page.

LAST MINUTE ADVICE:
2. Do not waste time reviewing the Spanish spelifing. INSTEAD, USE THE KEYWORD FIRST TO RECALL THE SOUND OF THE SPANISH WORD (then cover the keyword with your thumb if that will heip to avoid distraction), THEN
2. CONCENTRATE ENTIRELY ON REPEATING QUTETLY TO YOURSELF THE PRONUNCIATION OF THE SPANISH WORD AND ITS ENGLISH TRANSLATION. Use the time to fix in your memory the SOUND of the Spanish word and its English transiation.

APPENDIX C
The Test Vocabulary for Experiments III and IV*

Subvocabulary 1

			Performance		
Spanish	Keyword	Translation	Keyword	Control	Overall
CORDERO	[cord]	LAMB	. 35	. 26	. 32
PAVO	[paw]	TURKEY	. 04	. 08	. 07
CARACOL	[coal]	SNAIL	. 38	. 26	- 32
MOSCA	[moscow]	FLY	2.00	. 41	- 72
REIOJ	[rail]	CLOCX	. 16	. 34	. 27
Lata	[10t]	TIN CAN	. 37	. 40	. 38
MUJER	[hatr]	WOMAN	. 86	. 68	. 77
BOLSILILO	[bold]	POCKET	. 52	. 14	. 33
zaraguelies	[czar]	OVERALIS	. 15	. 19	. 17
PISO	[pea]	FLOOR	. 41	- 39	. 40
POLVO	[volvo]	DUST	. 64	. 26	. 47
PALANCA	[1awn]	CROWBAR	. 33	. 36	$\therefore .5$
RODILIA	[rodesia]	KNEE	.76	. 26	. 53
JABON	[bone]	SOAP	. 44	. 55	. 50
maista	[majlet]	SUTTCASE	. 46	. 69	. 58
POSTRE	[post]	DESSERT	. 38	. 11	. 25
PRADO	[prod]	MEADOW	. 43	. 26	. 28
CEBOLLA	[boy]	ONION	.63	.25	. 45
BUTACA	[boot]	ARMCHAIR	. 44	. 15	. 32
PULGADA	[god]	INCH	. 35	. 26	. 30
busca	[booze]	SEARCH	. 24	. 23	. 23
HERIDO	[reed]	WOUND	. 31	. 24	. 27
VIENTRE	[vienna]	BETIT	. 35	. 41	. 38
VIAJERO	[hero]	TRAVELER	. 43	. 23	- 32
JEFE	[hay]	BOSS	. 35	. 43	- 38
AVISO	[avis]	NOMTCE	. 57	. 24	. 37
GENTE	[hen]	PEOPLE	. 17	. 23	. 73
ROJO	[row]	RED	. 68	. 79	-73
gUERRA	[garise]	WAR	. 85	. 95	. 88
MES	[mace]	MONTH	. 20	- 73	. 55
MENESTER	[stair]	JOB	.63	. 53	. 57
PREGUNTA	[goon]	QUESTION	. 67	. 25	. 50

*Performance, averaged over the Comprehensive Test and the Delayed Comprehensive Test of Experiment III, is given for (1) the keyword condition (2) the control condition, and (3) overall.

Spanish	Keyword	Transiation	Performance		
			Keyword	Control	Overall
ORGULLO	[800]	PRIDE	. 46	. 36	. 40
DUDA	[dude]	DOUBII	. 50	. 71	. 58
PORMENOR	[poor manure]	detail	. 55	. 40	. 50
EXITO	[exit]	SUCCESS	. 55	. 48	. 50
PENSAMIENIO	[pen]	THOUGHT	. 35	. 15	. 27
SALUD	[salad]	HEALTH	. 69	. 71	. 70
TARDE	[tar]	AFTERNOON	.73	. 63	. 68
RUMBO	[room]	DIRECIION	. 44	. 39	. 42

Subvocabulary 2

CABRA	[cob]	GOAT	. 39	. 48	. 43
POLLO	[polo]	CRICKEN	. 33	. 39	. 37
SAPO	[sop]	TOAD	. 33	. 22	. 28
SALTAMONIES	[salt]	GRASSHOPPER	. 56	. 48	. 52
TIJERAS	[hair]	SCISSORS	. 57	. 22	. 38
CARPA	[carp]	TENT	. 78	. 61	. 70
BOMBERO	[bomb]	FIREMAN	. 62	. 74	. 68
TOALIA	[eye]	TOWEL	. 32	. 31	. 32
AJEDREZ	[head-dress]	CHESS	. 68	. 62	. 65
CHARCO	[charcoal]	PUDDIS	. 62	. 32	. 45
ARENA	[rain]	SAND	. 66	. 39	. 53
CLAVO	[claw]	NAIL	. 46	. 31	. 38
PESTANA	[pest]	EYELASH	. 35	. 35	. 35
azulejo	[zoo]	TILE	. 30	. 22	. 27
CHISPA	[cheese]	SPARK	. 70	. 39	. 58
TALLARIN	[tie]	NOODLE	. 57	. 59	. 58
medavo	[maid]	DUNE	. 31	. 26	. 25
NABO	[knob]	TURNIP	. 56	. 34	. 43
CAMA	[comma]	BED	. 93	. 84	. 90
LARC?	[lark]	LENGTH	. 58	. 56	. 57
CAZ:	[causeway]	HUNT	. 13	. 30	. 22
GOLPE	[gold]	HIT	. 40	. 23	. 32
ALA	[ailah]	WING	. 79	. 59	. 68
VIUDA	[view]	WIDOW	. 31	. 54	. 42
ALREDEDOR	[raid]	NEIGKBORHOOD	. 34	. 24	. 30
FONDO	[phone]	TOTTOM	. 44	. 54	. 50
MUNDO	[moon]	WORLD	. 60	. 63	. 62
MLLAGRO	[log-roll]	MIRACLE	. 33	. 25	. 30
ASUNTO	[sun]	AFFAIR	. 42	. 26	. 33
SIGLO	[sea-glow]	CENTURY	. 74	. 48	. 62
MOCEDAD	[moses]	YOUTH	. 49	. 39	. 45
DESER	[bear]	DUTY	. 22	. 16	. 28
DESCANSO	[desk]	REST	.43	. 35	. 38
TRISTELA	[tryst]	SADNESS	. 81	. 70	. 77

Performance

Spanish	Keyword
SEGUIDA	[guide]
MIEDO	[me]
RECUERDO	[rake]
RIQUEZA	[case]
DOMINGO	[ming]
AYUDA	[i you]

Translation

	.36	.18	.25
SERIES	.29	.32	.30
FEAR	.29	.26	.22
MEMORY	.18	.48	.33
WEALTH	.25	.48	.80
SUNDAY	.76	.87	.85
HELP	.61	.51	.55

Subvocabulary 3

CIERVO	[sierra]	DEER	. 58	. 31	. 45
PATO	[pot]	DUCK	. 59	. 39	. 48
gusano	[goose]	WORM	. 43	. 45	. 43
LAGARTIJA	[20g]	LIZARD	. 60	. 43	. 48
CUBETA	[cube]	PAIL	. 23	. 24	. 23
TENEDOR	[door]	FORK	. 62	. 42	. 53
PAYASO	[pie]	CLOWN	. 66	. 28	. 50
MUNECA	[moon]	DOLI	. 44	. 46	. 45
SILBIDO	[bee]	WHISTLE	. 11	. 22	. 17
TRIGO	[tree]	WHEAT	. 81	. 25	. 55
BARRO	[bar]	MUD	. 52	. 58	. 55
tenaza	[tennis]	PLIARS	. 36	. 22	. 30
brazo	[bra]	ARM	. 82	. 86	. 83
HELADO	[ale]	ICE CREAM	. 27	. 29	. 28
HILO	[eed]	THREAD	- 52	. 54	. 53
ARROZ	[rose]	RICE	. 63	. 68	. 65
CAMPO	[camp]	FIELD	. 65	. 68	.67
CARDO	[card]	THETLE	. 56	. 27	. 43
MULETA	[muje]	CRUTCH	.27	. 37	. 32
TIEMPO	[tempo]	TIME	. 80	. 70	. 75
ENSAYO	[sigh]	TRIAL	. 25	. 22	. 23
HOGAR	[ogre]	HOME	. 59	.57	. 58
CORAZON	[core]	HEART	. 16	. 25	. 20
SABIO	[sob]	SCHOLAR	. 25	.47	. 37
EJERCTTO	[hair]	APMY	. 39	. 32	. 37
RETRATO	[trot]	PICTURE	. 55	. 45	. 48
CIUDAD	[see you ded]	CITY	1.00	. 69	. 82
SABOR	[boar]	TASTE	. 29	. 20	. 25
LUCHA	[Iute]	FIGHT	. 61	. 59	. 60
PORVENIR	[veneer]	FUTURE	. 81	. 54	. 68
FAENA	[hyena]	TASK	. 38	. 35	- 37
JUICIO	[whee]	JUDGMENT	. 29	. 07	. 18
ESPERANZA	[pear]	HOPE	. 69	. 75	. 72

Spanish	Keyword	Translation	Performance		
			Keyword	Controd	Overall
ANHELO	[nail]	LONGING	. 29	. 32	. 30
EJEMPLO	[hemp]	EXAMPLE	.67	. 72	. 70
traves	[vase]	MISFORTUNE	. 44	. 25	. 37
CONOCTMIENTO	[cone]	KNOWLEDGE	. 29	. 58	. 42
PROVECHO	[pro-basebajl]	PROFIT	. 42	. 09	. 23
VENTA	[vent]	SALE	.67	. 53	. 58
DESAROLLO	[royal]	DEVELOPMENT	. 36	. 21	. 30

APPENDIX D

Instructions to All Subjects for Experiment III

Please read carefuliy. It is imperative that you do not discuss the experiment with other students. We will discuss general resuits with you after you have completed your work at the end of the week. If after reading the instructions you still have questions, indicate this to the proctor, and he (or she) will arrange to answer you without disturbing the other subjects.

In the days that follow, you will have Spanish words presented to you, one at a time. Each word will be pronounced three times, while its English translation is displayed on the screen. In haif of the cases, the keyword will be displayed in brackets to the left of the English translation; in the other half, the English translation will appear without the keyword. (Do not forget that keywords are derived from the SOUNDS of Spanish words and have nothing to do with their meanings.) After a word has been pronounced, the display will continue for a short time, then the program will advance to the next item.

REMEMBER, THE TRANSLATION WILL APPEAR ON THE RIGHT OF YOLR SCREEN, AND IN HALF THE CASES THE KEYWORD WILJ APPEAR IN BRACXETS TO THE LEFT OF THE ENGLISK TRANSLATION.

Your task will be to learn the meanings of the Spanish words using two different methods, depending upon whether or not keyword is displayed. The two methods, and when each is to be used, are described below.

METHOD I (TO BE USED WHEN A KEYWORD PRECEDES THE TRANSLATION)
When a keyword is displayed with the English transiation, the computer will pronounce the appropriate Spanish word three times (the pronunciation phase), then allow a pause for quiet study (the quiet phase). DURING THE PRONUNCIATION PHASE, CONCENTRAIE EXCLUSIVELY ON IEARNING THE KEYWORD.

DURING THE QUTET PHASE, ASSOCIATE THE KEYWORD WITH THE ENGLTSH TRANSLATION BY USING MENTAL TMAGERY. Do this by visualizing an imaginary situation in which the keyword and the translation interact. The image can be as wild and absurd as you like; the point is to make it vivid.

For example, suppose that the following keyword and translation appeared on your screen:
[EYE] HORSE

The computer would first pronounce the Spanish word iwhich sounds somewhat like "cob-eye-yo"), then allow a pause for quiet study. During the quiet phase, you should imagine an interaction between an eye and a horse. Following are some examples of what you might imagine:

1. Your own eye being flicked by the tail of a horse,
2. One cyclopean eye winking in the forehead of a horse,
3. A giant eye being kicked by a horse.

Any of these images could help you to recall that [EyE] was paired with horse. Create your own image to suit your taste. You will find that it is EASY to create such images, and, NO MAITIER HOW ILLOGICAL THEY MAY BE, IMAGES ARE POWERFUL MEMORY AIDS.

SO WHEN A KEYWORD IS DISPIAYED ON THE SCREEN, THE STRATEGY YOU SHOULD EMPLOY FOR LEARNING THE TRANSLATION IS TO

FIRST: (DURING THE PRONUNCTATION PHASE) LEARN THE KEYWORD.
SECOND: (DURING TIE QUTET PHASE) CREATE A DISTINCTIVE MENIAL IMAGE IN WHICH THE KEYWORD AND THE TRANSLATION INIERACT IN A GRAPKIC WAY. FOR TKIS INTERACTION, STICK TO ONE GOOD "PICTURE"--D NOT CONFUSE YOURSELF BY IMAGINING MORE THAN ONE INTERACIION.

As a second example, consider the Syanish word for WALRUS; it sounds somewhat like "more-sa" (accent on the first sy 1 lable). Suppose the following appeared on your screen:
[MORSEL] WALRUS
While the computer is pronouncing "more-sa" three times, you should concentrate entirely on learning the keyword. After the computer has completed the pronunciation, you should then create an image relating morsel to WALRUS. For example, imagine yourself eating a gigantic morsel of meat on a walrus-tusk toothpick, or image a whale spitting up morsels of wairus. VISUALIZE THE SCENE AS VIVIDLY AS POSSIBLE. MAKE THE IMAGE DYNAMIC.

Here are a few more tips on imagery that may be useful. If a key word or the English transiation is abstract, and not easy to picture directly, it is still easy to make up a symbolic image to assist your memory. For example, to visualize "thought" you might imagine some thoughtful person you know, scratehing his head. If a phrase or exclamation, such as "gee whizz," is used in place of a single keyword, imagine a situation in which the phrase or exclamation is appropriate.

If an occasional keyword sounds a little out of key to your ear, and a more "natural" keyword occurs to you, use your own. But remember, the keyword you choose must be easy to remember and easy to visualize.

METHOD II (TO BE USED WHEN NO KEYWORN IS GIVEN)
WHEN NO KEYWORD IS GIVEN, YOU MAY USE ANY LEARNING METHOD YOU LIKE, EXCEPT METHOD I. In other words, do ayything you like, but avoid using a keyword with mental imagery.

In a moment you will have an opportunity to practice Methods I and II on 10 Spanish words. But first, go back and review the capitalized statements, then read the advice on the following page.

LAST MINUTE ADVICE:
ALWAYS DO YOUR EEST TO LEARN EACH WORD. BE SURE TO USE THE APPROPRIATE METHOD:

IF THERE IS A KEXWORD, then

1. (During the pronunciation phase) LEARN THE KEYWORD, then
2. (After the pronunciation phase) CONCENTRATE ENPIRELY ON MAKING AN INIERACTIVE IMAGE connecting the keyword to the meaning.

IF THERE IS NOT A KEYWORD, then
2. Do your own thing.

Navy

4 Dr. Marshall J. Farr, Director Personnel \& Training Research Programs Office of Naval Research Arlington, VA 22217

1 Director
ONR Branch Office 495 Summer Street Boston, MA 02210
Attn: Psychologist
1 Director
ONR Branch Office 1030 East Green Street Pasadena, CA 91101
Attn: E. E. Gloye
1 Director
ONR Branch Office
536 South Clark Street
Chicago, IL 60605
Attn: M. A. Bertin
1 Office of Naval Research
Area Office
207 West 24 th Street
New York, NY 10012
6 Director
Naval Research Laboratory
Code 2627
Washington, DC 20390
12 Defense Documentation Center
Cameron Station, Building 5
5010 Duke Street
Alexandria, VA 22314
1 Chaiman
Behavioral Science Department
Naval Command and Management Division
U.S. Naval Academy

Luce Hall
Annapolis, MD 21402

2 Chief of Naval Technical Training
Naval Air Station Memphis (75)
Millington, TN 38054
Attn: Dr. N. J. Kerr
2 Chief of Navel Training Naval Air Station Pensacola, FL 32508
Attn: Capt. Bruce Stone, USN
1 LCDR Charles J. Theisen, Jr., MSC 4024
Naval Air Development Center
Warminster, PA 18974
1 Commander
Naval Air Reserve
Naval Air Station
Glenview, IL 60026
1 Commander
Naval Air Systems Command Department of the Navy AIR-423C
Washington, DC 20360
1 Mr. Lee Miller (AIR 413E)
Naval Air Systems Command
5600 Columbia Pike
Falls Church, VA 22042
1 Dr. Harold Booher
NAVAIR 415 C
Naval Air Systems Command 5600 Columbia Pike Falls Church, VA 22042

1 Capt. John F. Riley, USN Commanding Officer U.S. Neval Amphibious School Coronado, CA 92155

1 Special Assistant for Manpower OASN (M\&RA)
The Pentagon, Room 4E794 Washington, DC 20350

1 Dr. Richard J. Niehaus
Office of Civilian Manpower Management
Code 06A
Department of the Navy
Washington, DC 20390
1 CDR Richard L. Martin, USN COMFAIRMLRAMAR F- 14
NAS Miramar, CA 92145
1 Research Director, Code 06
Research and Evaluation Department
U.S. Naval Examining Center

Great Lakes, II 60088
Attn: C. S. Winiewicz
1 Chief
Bureau of Medicine and Surgery
Code 413
Washington, DC 20372
1 Program Coordinator
Bureau of Medicine and Surgery
(Code 71G)
Department of the Navy
Washington, DC 20372
1 Commanding Officer
Naval Medical Neuropsychiatric Research Unit
San Diego, CA 92152
1 Dr. John J. Collins
Chief of Naval Operations (OP-987F)
Department of the Navy
Washington, DC 20350
I Technical Library (Pers-11B)
Bureau of Naval Personnel
Department of the Navy
Washington, DC 20360
10 Dr. James J. Regan, Technical Director
Navy Perconnel Research and Develcpment Center
San Diego, CA 92152

1 Commanding Officer
Navy Personnel Research and Development Center
San Diego, CA 92152
1 Superintendent
Naval Postgraduate School
Monterey, CA 92940
Attn: Library (Code 2324)
2 Mr. George N. Graine
Naval Ship Systems Command
(SHIPS 047 Cl 2)
Department of the Navy
Washington, DC 20362
1 Technical Library
Naval Ship Systems Command
National Center, Building 3
Room 3508
Washington, DC 20360
2 Commanding officex Service School Command U.S. Naval Training Center San Diego, CA 92133
Attn: Code 303
1 Chief of Naval Training Support Code N-21
Building 45
Naval Air Station
Pensacola, FL 32508
1 Dr. William L. Maloy
Principal Civilian Advisor for Education and Training
Naval Training Command, Code OLA
Pensacola, FL 32508
1 Dr. Hanss H. Wolff
Technical Director (Code $\mathrm{N}-2$)
Naval Training Equipment Center Orlando, FL 32813

1 Mr . Arnold Rubinstein Naval Material Command (NMAT-03424)
Room 820, Crystal Plaza No. 6 Washington, DC 20360

1 Dr. H. Wallace Sinaiko c/o Office of Naval Research (Code 450) Psychological Sciences Division Arlington, VA 22227

1 Dr. Martin F. Wiskoff
Navy Personnel Research and Development Center
San Diego, CA 92152
1 Dr. John Ford, Jr.
Navy Personnel Research and Development Center
San Diego, CA 92152
1 Technical Library Navy Personnel Research and Development Center
San Diego, CA 92152

Army

1 Comandant
U.S. Army Institute of Administration Attn: EA
Fort Benjamin Harrison, IN 46216
1 Armed Forces Staff College
Norfolk VA 23531
Attn: Library
1 Director of Research
U.S. Army Armor Human Research Unit Attn: Library
Building 2422 Morade Streft
Fort Knox, KY 40121
I U.S. Army Research Institute for the Behavioral and Social Sciences 1300 Wilson Boulevard Arlington, VA 22209

1 Commanding Officer
Attn: LTC Montgomery USACDC - PASA
Ft. Benjamin Harrison, IN 46249

1 Dr. John L. Kobrick
Military Stress Laboratc: y
U.S. Axmy Research Institute ui

Environmental Medicine
Natick, MA 01760
1 Commandant
U.S. Army Infantry Schood

Attn: ATSIN-H
Fort Benning, GA 31905
1 U.S. Army Research Institute Commonwealth Building, Room 239 1300 Wilson Boulevard Arilngton, VA 22209 Attn: Dr. R. Dusek

1 Mr. Edmund F. Fuchs
U.S. Axmy Research Institute 1300 Wilson Boulevard Arlington, VA 22209

1 Chief, Unit Training and Educational Technology Systems
U.S. Army Research Institute for the Behaviorad and Social Sciences 1300 Wilson Boulevard
Arlington, VA 22209
1 Commander
U.S. Theater Army Support Command, Europe
Attn: Assi. DCSPER (Education)
APO New York 09058

1. Dr. Stanley L. Cohen Work Unit Area Leader Organizational Development Work Unit Army Research Institute for Behavioral and Social Sciences
1300 Wilson Boulevard Arlington, VA 22209

2 Dr. Leon H. Nawrocki
U.S. Army Research Institute Rosslyn Commonwealth Bullaing 1300 Wilson Boulevard Arlington, VA 22209

Air Force

1 Dr. Martin Rockway
Technical Training Division Lowry Air Force Base Denver, CO 80230

2 Maj. P. J. DeLeo Instructional Technology Branch AF Kuman Resources Laboratory Lowry Air Force Base, CO 80230

1 Headquarters, U.S. Air Force Chief, Personnel Research and Analysis Division (AF/DPSY)
Washington, DC 20330
1 Research and Analysis Division
AF/DPXYR - Room 4 C200
Washington, DC 20330
$1 \mathrm{AFHRI} / \mathrm{AS}$ (Dr. G. A. Eckstrand)
Wright-Patterson AFB
Ohio 45433
1 AFHRL (AST/Dr. Ross L. Morgan) Wright-Patterson Air Force Base Ohio 45433

1 AFHRI/MD
701 Prince Street
Room 200
Alexandria, VA 22324
1 AFOSR(NL)
1400 Wilison Boulevard
Arlington, VA 22209
1 Commandant
USAF School of Ae rospace Medicine
Aeromedical Library (SUL-4)
Brooks AFB, TX 78235
1 Capt. Jack Thorpe, USAF Department of Psychology Bowing Green State University Bowling Green, OH 43403

1 Headquarters, Electronic Systems Division
Attn: Dr. Syivia R. Mayer/MCIT
LG Hanscom Field
Bedford, MA 01730
1 Lt. Col. Henry L. Taylor, USAF Military Assistant for Humen Resources
OAD (E\&LSS) ODDR\&E
Pentagon, Room 3D329
Washington, DC 20301
Marine Coxps
I Col. George Caridakis Director, Office of Manpower Utilization
Headquarters, Marine Corps (A01H)
MCB
Quentico, VA 22134
1 Dr. A. L. Slafkosky
Scientific Advisor (Code Ax)
Commandant of the Marine Corps
Washington, DC 20380
I Mr. E. A. Dover
Manpower Measurement Unit (Code MPI)
Arlington Annex, Room 2413
Arilington, VA 20370

Coast Guard

1 Mr. Joseph J. Cowan, Chief
Psychological Research Branch (P-1)
U.S. Coast Guard Headquarters

400 Seventh Street, SW
Washington, DC 20590
Other DOD
1 Lt. Col. Austin W. Kibler, Director Human Resources Research Office Advanced Research Projects Agency 2400 Wilson Boulevard Arlington, VA 22209

2 Mr . Helga Heich, Director Program Management, Defense Adavanced

Research Projects Agency 1400 Wilson Boulevard Arlington, VA 22209

1 Mr. William J. Stomer
DOD Computer Institute
Washington Navy Yard
Building 275
Washington, DC 20374
1 Mr . Thomas C. O'Sulizven Human Resources Research Office Aavanced Research Projects Agency 1400 Wilson Boulevard Arlington, VA 22209

Other Government

1 Office of Computer Information Institute for Computer Sciences and rechnology
National Bureau of Standards Washington, DC 20234

1 Dr. Eric McWilliams, Program Manager Technology and Systems, TIE National Science Foundation Washington, DC 20550

Miscellaneous

1 Dr. Scervia B. Anderson Educational Testing Service 17 Executive Park Drive, N.E. AtIanta, GA 30329

1 Dr. Bermard M. Bass University of Tochester Management Research Center Rochester, NY 14627

1 Mr. Edmund C. Berkeley Berkeley Enterprises, Inc. 815 Washington Street Newtonville, MA 02160

1 Dr. David G. Bowers University of Michigan Institute for Social Research P.O. Box 1248 Ann Arbor, MI 48106

1 Mr . H. Dean Rrown
Stanford Research Institute 333 Ravenswood Avenue
Menlo Park, CA 94025
1 Mr. Michael W. Brown Operations Research, Inc. 1400 Spring Street Silver Spring, MD 20910

1 Dr. Ronald P. Carver
American Institutes for Research
8555 Sixteenth Street
Silver Spring, MD 20910
1 Cuntury Research Corporation 4113 Lee Highway Arlington, VA 22207

2 Dr. Kemeth E. Clark University of Rochester College of Arts and Sciences
River Campus Station
Rochester, NY 24627
1 Dr. Allan M. Collins Bolt Beranek and Newman 50 Moulton Street Cambridge, MA 02138

1 Dr. René V. Dawls University of Minnescta nepartment of Psychology Minneapolis, MN 55455

2 ERTC
Processing and Reference Faciょlty 4833 Rugby Avenue Bethesda, MD 20014

1 Dr. Victor Fields Department of Psychology Montgomery College Rockville, MD 20850

2 Dr. Edwin A. Fleishman American Institutes for Research 8555 Sixteenth Street Silver Spring, MD 20910

1 Dr. Druncan N. Hansen
Memphis State University
Bureau of Educational Research and Seivices
Memphis, TN 38152
1 Dr. Robert Glaser, Director University of Pittsburgh Learning Research and Development Center
Pittsburgh, PA 15213
1 Dr. Albert S. Glickman American Institutes for Research 8555 Sixteenth Street
Silver Spring, MD 20910
2 Dr. Henry J. Hamburger University of Callfornia School of Social Sciences Irvine, CA 92664

1 Dr. Richard S. Hatch Decision Systems Associates, Inc. 12428 Rockville Fike Rockville, MD 20852

1 Dr. M. D. Havron
Human Sciences Research, Inc. Westgate Industrial Park 7710031 Springhouse Road Mclean, VA 22101

2 Human Resources Research Organization Division \#3
P.O. Box 5787

Presidio of Monterey, CA 93940
1 Kuman Fiesources Research Organization Division \#4, Infantry
P.O. Box 2086

Fort Benning, GA 31905
1 Human Resources Research Organization Division \#5, Air Defense
P.O. Box 6057

Fort Bliss, TX 79916

1 Human Resources Research Organization Division \#6, Library
P.O. Box 428

Fort Racker, al 36360
1 Dr. Lawrence B. Johnson Lawrence Johnson and Associates, Inc. 200 S. Street, N.W., Suite 502
Washington, DC 20009
2 Dr. Norman J. Johnson
Carnegie-Mellon University
School of Urban and Public Affairs
Pittsburgh, PA 15213
1 Dr. David Klanr
Carnegie-Melion University
Department of Psycholcgy
Pittsburgh, PA 15213
2 Dr. Robert R. Mackie
Human Factors Research, Inc.
6780 Cortona Drive
Santa Barbara Research Park
Goleta, CA 93017
1 Dr. Andrew R. Molnar
Technological Innovations in Education
National Science Foundation Washington, DC 20550

1 Dr. Leo Munday, Vice President American College Testing Program
P.O. Box 168

Iowa City, IA 52250
1 Dr. Donaid A. Normar. University of Califormia, San Diego Center for Human Informat on Processing
La Jolla, CA 92037
1 Mr. Luigi Petrullo 2431 North Edgewood Street Arlington, VA 22207

1 Dr. Diane M. Ramsey-Klee R-K Research \& System Design 3947 Ridgemont Drive Malibu, CA 90265

1 Dr. Joseph W. Rigney
Behavioral Technology Laboratories University of Southern Callfornia 3727 South Grand Los Angeles, CA 90007

1 Dr. Leonard L. Rosenbaum, Chairman Department of Psychology Montgomery College Rockville, MD 20850

1 Dr. George E. Rowland Rowland and Company, Inc. P.O. Box 61

Haddonfield, NJ 08033
1 Mr. A. J. Pesch, President Eclectech Associates, Inc. P.O. BOX 278

North Stoningten, CT 06359
1 Dr. Axthur I. Siegel
Applied Psychological Services
Science Center
404 East Lancaster Avenue Wayne, PA 19087

1 Mr. Dennis J. Sullizan
725 Benson Way
Thousand Oaks, CA 91360
1 Dr. Benton J. Underwood Northwestern University Department of Psychology Evanston, IL 60201

1 Dr. David J. Weiss University of Minnesota Department of Psychology Minneapolis, MN 55455

1 Dr. Anita West
Denver Research Institute University of Denver Denver, CO 80210

1 Dr. Kenneth Wexler University of California School of Social Sciences Irvine, CA 92664

1 Dr. John Annett
The Open University
Milton Keynes
Buckinghamshire, ENGLAND
1 Dr. Miltion S. Katz
MITRE Corporation
Westgate Research Center
McLean, VA 22101
1 Dr. Charles A. Ulimann
Director, Behavioral Sciences Studies.
Information Concepts, Inc. 2701 N. Ft. Myer Drive Arlington, VA 22209

2 Dr. Dexter Fletcher Department of Psychology P.O. Box 4348

Universits of Illincis, Chicago circie
(Chicurn, IL 00680
1 Dr. Alfred F. Snode, Stalf Consultant
Trainine Analysis and Evaluation Group
Naval Training Equipment Center
Code 1H-OM'
Orlunde, FL 32813

 Fuchophysics. 1971, 10, 8.14.)
 and Pychophyses. $19:$: 335-338.1
J. V. Fletcher and R. C. itw.... An evaluation of thi Staford CAl preyrat mintal reading (qrades K throuah 3). March 12, 1971. (Evaluation of the Stmond wi:, ogram in mital ratam. Journal of Educational Pzycholegy, 1972, 63, 597-602.)
J. F Juola and R. C. Atkinson. Memory scamnin for nords versus catequres. Wournal of Vertal Learmmig and Verbal Behavior. 1971 .
10,522-527.) 10.522-527.1

1. S. Fischter and 3. F. Juola. Elfects of repedted tests on recountion time for intormation in lonq-term memary. Uournal of Expepimental Psychalogy, 1971, 91, 54-58.1
P. Suppes. Semamics $\overline{0}$: mitext-free fragments of natural tanguages. Murch 30, 1971. In K. J. J. Mimitha, J. M. E. Moravesik, and P. Suppes (Eds.), Appratehes to natural latiguage. Dordrecht: Reidel, 1973. Pp. 221-242.)
2. Fiend. INSTRUCT coders' manual. May 1,1971.
R. C. Atkinson and R. M. Shiffin, The control processes of shoft-temmemory. Ansil 19, 1971. (The cuntrol of short-term memory, Scientilic American, 1971, 224, 82-90.)
P. Suppes, Compter-assisted instrucion at Stamord. May 19.1971. In Man and computer. Proceudings of mternationd conference, Bordeaux, 1970. Basel: Karger, 1972. P0. 298-530.
D. Jamison, J. D. Fletcher, P. Suppes, and R. C. Alminson. Cort and pertormance of computer-assisted instruction for education of disadvantaged
chidren. July, 197;. chidren. Juiy. 197 I .
3. Offir. Some mathematical models of individual tifferences in teatning and pertormance. Sume 28, 1971. (Stochastic leaminy models with distribution of parampters. Jourmal of Mathematical Psychology, $2972,5(4)$,
R. C. Atkinson and J. F. Juola, Factors miluencing speed ind dccuracy of word recogntion. Auqust 12, 1971. In S. Kornblum (Ed.), Attention and perfornunce IV. New Youk. Academi Fress, 1973.1
P. Suppes, A. Goldtery, G. Kath, B. Faarle, and C. Statiter. Teacher's handhook for CAl courses. September 1, 1971.
A. Goldberg. A generalized instructional system for elementary mathematicas :ngit. October 11, 1971.
M. Jerman. Instruction in problem solving and an analysis of structural var ies that contribute to problem-solving difliculty, Nove her 12 ,
 4.6-19.)
P. Sumpes. On the grammar and model-thenfelic semantics of f.lt creti's 2. ihrases. November 29. 1971.
G. Kreisel. Five notes on the application of prool theory to comouter • innir. Urcr-nbur 10, 1971.
J. M. Moloney. An mestigation of colleqe studnot pertormance on. himp cierricuiun in a computer-distited instruction setting. Jamary 28, 197?.

R. L. Smith, Ir. The symax and senmmic of ERICA lame 14. 147 ?.
 in Mathematics, 1972.4.429-449.1
R. $\overline{\mathrm{C}}$. Atkenson. Ingredients tor a theory of instruction. Jum 26, 1972. Andres,12 Psyenolsosist, 1472, 27. 421-931.1

 Science, 1:73, 1. 469-501.)

 1972.
 esearch. Englewood Clilis, N. 3. Prent:c-Mail, 1973, Fu. 6-45.,

 Univefsity. February 14, 1973.

gest copy available

(Gontinued from inside back cover)

211 . Friend. Computer-assisted instruction in programming: A curriculum description. July 31, 1973.
212 S. A. Weyer. Fingerspelling by computer. August 17, 1973.
213 B. W. Searie, P. Loton, Jr., and P. Suppes. Structural variables affecting CAl performance on arithmetic word problems of disadvantaged and deaf students. September $4,2973$.

